Suppr超能文献

在三维空间中构建图灵完备的欧拉流。

Constructing Turing complete Euler flows in dimension 3.

作者信息

Cardona Robert, Miranda Eva, Peralta-Salas Daniel, Presas Francisco

机构信息

Laboratory of Geometry and Dynamical Systems, Department of Mathematics and IMTech, Universitat Politècnica de Catalunya (UPC), Barcelona 08028, Spain.

BGSMath Barcelona Graduate School of Mathematics, Centre de Recerca Matemàtica (CRM) Campus de Bellaterra, Edifici C, 08193 Barcelona, Spain.

出版信息

Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2026818118.

Abstract

Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. More recently, Tao launched a program based on the Turing completeness of the Euler equations to address the blow-up problem in the Navier-Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem to quantum-field theories. To the best of our knowledge, the existence of undecidable particle paths of three-dimensional fluid flows has remained an elusive open problem since Moore's works in the early 1990s. In this article, we construct a Turing complete stationary Euler flow on a Riemannian [Formula: see text] and speculate on its implications concerning Tao's approach to the blow-up problem in the Navier-Stokes equations.

摘要

每个物理系统都能模拟任何图灵机吗?这是一个经典问题,与某些物理现象的不可判定性密切相关。关于流体流动,摩尔[C. 摩尔,《物理评论快报》4,199 (1991)]曾问流体动力学是否能够进行计算。最近,陶哲轩发起了一个基于欧拉方程的图灵完备性的项目,以解决纳维 - 斯托克斯方程中的爆破问题。在这个方向上,近年来已经研究了一些物理系统的不可判定性,从量子间隙问题到量子场论。据我们所知,自20世纪90年代初摩尔的研究以来,三维流体流动中不可判定粒子路径的存在一直是一个难以捉摸的开放问题。在本文中,我们在黎曼流形[公式:见原文]上构造了一个图灵完备的定常欧拉流,并推测其对陶哲轩解决纳维 - 斯托克斯方程爆破问题方法的影响。

相似文献

1
Constructing Turing complete Euler flows in dimension 3.在三维空间中构建图灵完备的欧拉流。
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2026818118.
2
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Phys Rev Lett. 2008 Dec 31;101(26):261602. doi: 10.1103/PhysRevLett.101.261602.
7
Undecidability of the spectral gap.谱隙的不可判定性。
Nature. 2015 Dec 10;528(7581):207-11. doi: 10.1038/nature16059.
8
Helicity and singular structures in fluid dynamics.流动力学中的螺旋性和奇异结构。
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3663-70. doi: 10.1073/pnas.1400277111. Epub 2014 Feb 11.
10
Energy balance for forced two-dimensional incompressible ideal fluid flow.强迫二维不可压缩理想流体流动的能量平衡
Philos Trans A Math Phys Eng Sci. 2022 Mar 21;380(2219):20210095. doi: 10.1098/rsta.2021.0095. Epub 2022 Jan 31.

本文引用的文献

1
Undecidability of the spectral gap.谱隙的不可判定性。
Nature. 2015 Dec 10;528(7581):207-11. doi: 10.1038/nature16059.
2
Unpredictability and undecidability in dynamical systems.动态系统中的不可预测性和不可判定性。
Phys Rev Lett. 1990 May 14;64(20):2354-2357. doi: 10.1103/PhysRevLett.64.2354.
3
Undecidability and intractability in theoretical physics.理论物理学中的不可判定性与难解性。
Phys Rev Lett. 1985 Feb 25;54(8):735-738. doi: 10.1103/PhysRevLett.54.735.
4
P/NP, and the quantum field computer.P/NP问题与量子场计算机。
Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):98-101. doi: 10.1073/pnas.95.1.98.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验