Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.
Nanoscale. 2021 May 20;13(19):8875-8883. doi: 10.1039/d1nr00611h.
Nucleic acids are versatile scaffolds that accommodate a wide range of precisely defined operational characteristics. Rational design of sensing, molecular computing, nanotechnology, and other nucleic acid devices requires precise control over folding conformations in these macromolecules. Here, we report a new approach that empowers well-defined conformational transitions in DNA molecular devices. Specifically, we develop tools for precise folding of multiple DNA quadruplexes (i-motifs) within the same oligonucleotide strand. To accomplish this task, we modify a DNA strand with kinetic control elements (hairpins and double stranded stems) that fold on a much faster timescale and consequently guide quadruplexes toward the targeted folding topology. To demonstrate that such guiding elements indeed facilitate formation of the targeted folding topology, we thoroughly characterize the folding/unfolding transitions through a combination of thermodynamic techniques, size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). Furthermore, we extend SAXS capabilities to produce a direct insight on the shape and dimensions of the folded quadruplexes by computing their electron density maps from solution scattering data.
核酸是多功能的支架,能够容纳广泛的精确定义的操作特性。传感、分子计算、纳米技术和其他核酸器件的合理设计需要对这些大分子中的折叠构象进行精确控制。在这里,我们报告了一种新方法,该方法能够在 DNA 分子器件中实现明确的构象转变。具体来说,我们开发了用于在同一条寡核苷酸链内精确折叠多个 DNA 四链体(i 型发夹)的工具。为了实现这一目标,我们用动力学控制元件(发夹和双链茎)修饰 DNA 链,这些元件在更快的时间尺度上折叠,从而引导四链体朝着目标折叠拓扑结构。为了证明这些引导元件确实有助于形成目标折叠拓扑结构,我们通过热力学技术、尺寸排阻色谱(SEC)和小角 X 射线散射(SAXS)的组合,彻底表征了折叠/解折叠转变。此外,我们通过从溶液散射数据计算折叠四链体的电子密度图,扩展了 SAXS 的能力,从而直接了解折叠四链体的形状和尺寸。