Wei Kai, Kong Wei, Wang Shuaiqun
Shanghai Maritime University, Shanghai, 201306, China.
Med Biol Eng Comput. 2022 Jan;60(1):95-108. doi: 10.1007/s11517-021-02439-2. Epub 2021 Oct 29.
Imaging genetics research can explore the potential correlation between imaging and genomics. Most association analysis methods cannot effectively use the prior knowledge of the original data. In this respect, we add the prior knowledge of each original data to mine more effective biomarkers. The study of imaging genetics based on the sparse canonical correlation analysis (SCCA) is helpful to mine the potential biomarkers of neurological diseases. To improve the performance and interpretability of SCCA, we proposed a penalty method based on the autocorrelation matrix for discovering the possible biological mechanism between single nucleotide polymorphisms (SNP) variations and brain regions changes of Alzheimer's disease (AD). The addition of the penalty allows the proposed algorithm to analyze the correlation between different modal features. The proposed algorithm obtains more biologically interpretable ROIs and SNPs that are significantly related to AD, which has better anti-noise performance. Compared with other SCCA-based algorithms (JCB-SCCA, JSNMNMF), the proposed algorithm can still maintain a stronger correlation with ground truth even when the noise is larger. Then, we put the regions of interest (ROI) selected by the three algorithms into the SVM classifier. The proposed algorithm has higher classification accuracy. Also, we use ridge regression with SNPs selected by three algorithms and four AD risk ROIs. The proposed algorithm has a smaller root mean square error (RMSE). It shows that proposed algorithm has a good ability in association recognition and feature selection. Furthermore, it selects important features more stably, improving the clinical diagnosis of new potential biomarkers.
影像遗传学研究可以探索影像学与基因组学之间的潜在关联。大多数关联分析方法无法有效利用原始数据的先验知识。在这方面,我们添加每个原始数据的先验知识以挖掘更有效的生物标志物。基于稀疏典型相关分析(SCCA)的影像遗传学研究有助于挖掘神经疾病的潜在生物标志物。为了提高SCCA的性能和可解释性,我们提出了一种基于自相关矩阵的惩罚方法,用于发现单核苷酸多态性(SNP)变异与阿尔茨海默病(AD)脑区变化之间可能的生物学机制。惩罚项的加入使所提出的算法能够分析不同模态特征之间的相关性。所提出的算法获得了更多与AD显著相关的具有生物学可解释性的感兴趣区域(ROI)和SNP,具有更好的抗噪性能。与其他基于SCCA的算法(JCB - SCCA、JSNMNMF)相比,即使在噪声较大时,所提出的算法与真实情况仍能保持更强的相关性。然后,我们将三种算法选择的感兴趣区域(ROI)放入支持向量机分类器中。所提出的算法具有更高的分类准确率。此外,我们使用岭回归结合三种算法选择的SNP和四个AD风险ROI。所提出的算法具有更小的均方根误差(RMSE)。这表明所提出的算法在关联识别和特征选择方面具有良好的能力。此外,它更稳定地选择重要特征,改善了新潜在生物标志物的临床诊断。