Cubi Roger, Bouhedda Farah, Collot Mayeul, Klymchenko Andrey S, Ryckelynck Michael
Université de Strasbourg.
Université de Starsbourg-CNRS.
RNA. 2021 May 5;27(7):841-53. doi: 10.1261/rna.077586.120.
The function of an RNA is intimately linked to its three-dimensional structure. X-ray crystallography or NMR allow the fine structural characterization of small RNA (e.g., aptamers) with a precision down to atomic resolution. Yet, these technics are time consuming, laborious and do not inform on mutational robustness and the extent to which a sequence can be modified without altering RNA function, an important set of information to assist RNA engineering. On another hand, thought powerful, in silico predictions still lack the required accuracy. These limitations can be overcome by using high-throughput microfluidic-assisted functional screening technologies, as they allow exploring large mutant libraries in a rapid and cost-effective manner. Among them, we recently introduced the microfluidic-assisted In Vitro Compartmentalization (µIVC), an efficient screening strategy in which reactions are performed in picoliter droplets at rates of several thousand per second. We later improved µIVC efficiency by using in tandem with high throughput sequencing, thought a laborious bioinformatic step was still required at the end of the process. In the present work, we strongly increased the automation level of the pipeline by implementing an artificial neural network enabling unsupervised bioinformatic analysis. We demonstrate the efficiency of this "µIVC-Useq" technology by rapidly identifying a set of sequences readily accepted by a key domain of the light-up RNA aptamer SRB-2. This work not only shed some new light on the way this aptamer can be engineered, but it also allowed us to easily identify new variants with an up-to 10-fold improved performance.
RNA的功能与其三维结构密切相关。X射线晶体学或核磁共振技术能够对小RNA(如适体)进行精细的结构表征,精度可达原子分辨率。然而,这些技术耗时费力,且无法提供关于突变稳健性以及序列在不改变RNA功能的情况下可被修饰程度的信息,而这些信息对于辅助RNA工程至关重要。另一方面,尽管计算机模拟预测功能强大,但仍缺乏所需的准确性。通过使用高通量微流控辅助功能筛选技术可以克服这些限制,因为它们能够以快速且经济高效的方式探索大型突变体文库。其中,我们最近引入了微流控辅助体外区室化技术(µIVC),这是一种高效的筛选策略,反应在皮升液滴中以每秒数千次的速率进行。后来,我们通过与高通量测序串联使用来提高µIVC的效率,不过在过程结束时仍需要一个繁琐的生物信息学步骤。在本工作中,我们通过实施一个能够进行无监督生物信息学分析的人工神经网络,大幅提高了流程的自动化水平。我们通过快速识别一组易于被发光RNA适体SRB - 2的关键结构域接受的序列,证明了这种“µIVC - Useq”技术的效率。这项工作不仅为这种适体的工程改造方式提供了新的思路,还使我们能够轻松识别性能提高多达10倍的新变体。