MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Nature. 2021 May;593(7860):602-606. doi: 10.1038/s41586-021-03524-0. Epub 2021 May 5.
MicroRNAs (miRNAs) have essential functions during embryonic development, and their dysregulation causes cancer. Altered global miRNA abundance is found in different tissues and tumours, which implies that precise control of miRNA dosage is important, but the underlying mechanism(s) of this control remain unknown. The protein complex Microprocessor, which comprises one DROSHA and two DGCR8 proteins, is essential for miRNA biogenesis. Here we identify a developmentally regulated miRNA dosage control mechanism that involves alternative transcription initiation (ATI) of DGCR8. ATI occurs downstream of a stem-loop in DGCR8 mRNA to bypass an autoregulatory feedback loop during mouse embryonic stem (mES) cell differentiation. Deletion of the stem-loop causes imbalanced DGCR8:DROSHA protein stoichiometry that drives irreversible Microprocessor aggregation, reduced primary miRNA processing, decreased mature miRNA abundance, and widespread de-repression of lipid metabolic mRNA targets. Although global miRNA dosage control is not essential for mES cells to exit from pluripotency, its dysregulation alters lipid metabolic pathways and interferes with embryonic development by disrupting germ layer specification in vitro and in vivo. This miRNA dosage control mechanism is conserved in humans. Our results identify a promoter switch that balances Microprocessor autoregulation and aggregation to precisely control global miRNA dosage and govern stem cell fate decisions during early embryonic development.
微小 RNA(miRNA)在胚胎发育过程中具有重要功能,其失调会导致癌症。不同组织和肿瘤中存在改变的全局 miRNA 丰度,这意味着 miRNA 剂量的精确控制很重要,但这种控制的潜在机制尚不清楚。由一个 DROSHA 和两个 DGCR8 蛋白组成的蛋白复合物 Microprocessor 对于 miRNA 的生物发生是必不可少的。在这里,我们确定了一种涉及 DGCR8 替代转录起始(ATI)的发育调控 miRNA 剂量控制机制。ATI 发生在 DGCR8 mRNA 的茎环下游,以在小鼠胚胎干细胞(mES)细胞分化过程中绕过自身反馈回路。茎环缺失导致 DGCR8:DROSHA 蛋白比例失衡,从而导致不可逆的 Microprocessor 聚集、初级 miRNA 加工减少、成熟 miRNA 丰度降低以及脂质代谢 mRNA 靶标广泛去抑制。尽管全局 miRNA 剂量控制对于 mES 细胞退出多能性不是必需的,但它的失调会改变脂质代谢途径,并通过体外和体内破坏生殖层特化来干扰胚胎发育。这种 miRNA 剂量控制机制在人类中是保守的。我们的研究结果确定了一个启动子开关,该开关平衡了 Microprocessor 的自身调节和聚集,以精确控制全局 miRNA 剂量,并在早期胚胎发育过程中控制干细胞命运决定。