Suppr超能文献

基于BERT嵌入的立场检测用于社交媒体信息可信度分析

Stance detection with BERT embeddings for credibility analysis of information on social media.

作者信息

Karande Hema, Walambe Rahee, Benjamin Victor, Kotecha Ketan, Raghu T S

机构信息

Computer Science, Symbiosis Institute of Technology, Pune, Maharashtra, India.

Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Pune, India., Pune, Maharashtra, India.

出版信息

PeerJ Comput Sci. 2021 Apr 14;7:e467. doi: 10.7717/peerj-cs.467. eCollection 2021.

Abstract

The evolution of electronic media is a mixed blessing. Due to the easy access, low cost, and faster reach of the information, people search out and devour news from online social networks. In contrast, the increasing acceptance of social media reporting leads to the spread of fake news. This is a minacious problem that causes disputes and endangers the societal stability and harmony. Fake news spread has gained attention from researchers due to its vicious nature. proliferation of misinformation in all media, from the internet to cable news, paid advertising and local news outlets, has made it essential for people to identify the misinformation and sort through the facts. Researchers are trying to analyze the credibility of information and curtail false information on such platforms. Credibility is the believability of the piece of information at hand. Analyzing the credibility of fake news is challenging due to the intent of its creation and the polychromatic nature of the news. In this work, we propose a model for detecting fake news. Our method investigates the content of the news at the early stage i.e., when the news is published but is yet to be disseminated through social media. Our work interprets the content with automatic feature extraction and the relevance of the text pieces. In summary, we introduce stance as one of the features along with the content of the article and employ the pre-trained contextualized word embeddings BERT to obtain the state-of-art results for fake news detection. The experiment conducted on the real-world dataset indicates that our model outperforms the previous work and enables fake news detection with an accuracy of 95.32%.

摘要

电子媒体的发展是一把双刃剑。由于信息获取便捷、成本低廉且传播速度更快,人们从在线社交网络中搜寻并大量阅读新闻。相比之下,社交媒体报道越来越被接受,这导致了假新闻的传播。这是一个危险的问题,会引发争议并危及社会稳定与和谐。假新闻传播因其恶性本质已引起研究人员的关注。从互联网到有线新闻、付费广告和地方新闻媒体等所有媒体中错误信息的泛滥,使得人们识别错误信息并梳理事实变得至关重要。研究人员正试图分析信息的可信度,并在这类平台上减少虚假信息。可信度是手头这条信息的可信程度。由于假新闻的创作意图和新闻的多面性,分析其可信度具有挑战性。在这项工作中,我们提出了一种检测假新闻的模型。我们的方法在早期阶段,即新闻发布但尚未通过社交媒体传播时,就对新闻内容进行研究。我们的工作通过自动特征提取和文本片段的相关性来解读内容。总之,我们将立场作为其中一个特征与文章内容一起引入,并使用预训练的上下文词嵌入BERT来获得用于假新闻检测的最先进结果。在真实世界数据集上进行的实验表明,我们的模型优于先前的工作,能够以95.32%的准确率进行假新闻检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05c7/8053013/2b3e8d9212dc/peerj-cs-07-467-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验