Suppr超能文献

GBERT:一种基于GPT-BERT的用于虚假新闻检测的混合深度学习模型。

GBERT: A hybrid deep learning model based on GPT-BERT for fake news detection.

作者信息

Dhiman Pummy, Kaur Amandeep, Gupta Deepali, Juneja Sapna, Nauman Ali, Muhammad Ghulam

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140601, Punjab, India.

Department of CSE (AI), KIET Group of Institutions, Ghaziabad, 201206, India.

出版信息

Heliyon. 2024 Aug 6;10(16):e35865. doi: 10.1016/j.heliyon.2024.e35865. eCollection 2024 Aug 30.

Abstract

The digital era has expanded social exposure with easy internet access for mobile users, allowing for global communication. Now, people can get to know what is going on around the globe with just a click; however, this has also resulted in the issue of fake news. Fake news is content that pretends to be true but is actually false and is disseminated to defraud. Fake news poses a threat to harmony, politics, the economy, and public opinion. As a result, bogus news detection has become an emerging research domain to identify a given piece of text as genuine or fraudulent. In this paper, a new framework called Generative Bidirectional Encoder Representations from Transformers (GBERT) is proposed that leverages a combination of Generative pre-trained transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT) and addresses the fake news classification problem. This framework combines the best features of both cutting-edge techniques-BERT's deep contextual understanding and the generative capabilities of GPT-to create a comprehensive representation of a given text. Both GPT and BERT are fine-tuned on two real-world benchmark corpora and have attained 95.30 % accuracy, 95.13 % precision, 97.35 % sensitivity, and a 96.23 % F1 score. The statistical test results indicate the effectiveness of the fine-tuned framework for fake news detection and suggest that it can be a promising approach for eradicating this global issue of fake news in the digital landscape.

摘要

数字时代通过移动用户易于接入互联网扩大了社会曝光度,实现了全球通信。现在,人们只需点击一下就能了解全球正在发生的事情;然而,这也导致了假新闻问题。假新闻是指那些伪装成真实但实际上是虚假的、旨在欺骗而传播的内容。假新闻对和谐、政治、经济和舆论构成威胁。因此,虚假新闻检测已成为一个新兴的研究领域,用于将给定的文本识别为真实或欺诈性的。本文提出了一种名为生成式双向编码器表征变换器(GBERT)的新框架,该框架利用了生成式预训练变换器(GPT)和双向编码器表征变换器(BERT)的组合,并解决了假新闻分类问题。这个框架结合了两种前沿技术的最佳特性——BERT的深度上下文理解和GPT的生成能力——来创建给定文本的全面表征。GPT和BERT都在两个真实世界的基准语料库上进行了微调,准确率达到了95.30%,精确率达到了95.13%,灵敏度达到了97.35%,F1分数达到了96.23%。统计测试结果表明了微调后的框架在检测假新闻方面的有效性,并表明它可能是在数字领域根除这一全球假新闻问题的一种有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a96/11365402/be1817c694cc/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验