Suppr超能文献

从嵌入式标记到大脑应变的位移误差传播。

Displacement Error Propagation From Embedded Markers to Brain Strain.

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609.

Department of Mathematics, Worcester Polytechnic Institute, Worcester, MA 01609.

出版信息

J Biomech Eng. 2021 Oct 1;143(10). doi: 10.1115/1.4051050.

Abstract

Head injury model validation has evolved from against pressure to relative brain-skull displacement, and more recently, against marker-based strain. However, there are concerns on strain data quality. In this study, we parametrically investigate how displacement random errors and synchronization errors propagate into strain. Embedded markers from four representative configurations are used to form unique and nonoverlapping tetrahedrons, triangles, and linear elements. Marker displacements are then separately subjected to up to ±10% random displacement errors and up to ±2 ms synchronization errors. Based on 100 random trials in each perturbation test, we find that smaller strain errors relative to the baseline peak strains are significantly associated with larger element sizes (volume, area, or length; p < 0.05). When displacement errors are capped at the two extreme levels, the earlier "column" and "cluster" configurations provide few usable elements with relative strain error under an empirical threshold of 20%, while about 30-80% of elements in recent "repeatable" and "uniform" configurations are considered otherwise usable. Overall, denser markers are desired to provide exhaustive pairwise linear elements with a range of sizes to balance the need for larger elements to minimize strain error but smaller elements to increase the spatial resolution in strain sampling. Their signed strains also provide unique and unambiguous information on tissue tension and compression. This study may provide useful insights into the scrutinization of existing experimental data for head injury model strain validation and to inform how best to design new experiments in the future.

摘要

头部损伤模型验证已经从对抗压力演变为相对的脑颅骨位移,最近又演变为基于标志物的应变。然而,人们对应变数据的质量存在担忧。在这项研究中,我们从参数上研究了位移随机误差和同步误差如何传播到应变中。从四个代表性配置中嵌入的标记物用于形成独特且不重叠的四面体、三角形和线性元素。然后,单独对标记物位移施加高达±10%的随机位移误差和高达±2 ms 的同步误差。基于每种扰动测试中的 100 次随机试验,我们发现与基线峰值应变相比,较小的应变误差与较大的元素尺寸(体积、面积或长度)显著相关(p<0.05)。当位移误差被限制在两个极端水平时,较早的“柱形”和“簇形”配置仅提供少数可用的元素,其相对应变误差低于 20%的经验阈值,而最近的“可重复”和“均匀”配置中的约 30-80%的元素在其他方面被认为是可用的。总体而言,需要更密集的标记物来提供具有各种尺寸的详尽成对线性元素,以平衡对更大元素的需求,以最小化应变误差,但对更小元素的需求,以提高应变采样的空间分辨率。它们的符号应变也提供了关于组织张力和压缩的独特而明确的信息。这项研究可能为头部损伤模型应变验证的现有实验数据的审查提供有用的见解,并为未来如何最好地设计新实验提供信息。

相似文献

1
Displacement Error Propagation From Embedded Markers to Brain Strain.
J Biomech Eng. 2021 Oct 1;143(10). doi: 10.1115/1.4051050.
2
Displacement- and Strain-Based Discrimination of Head Injury Models across a Wide Range of Blunt Conditions.
Ann Biomed Eng. 2020 Jun;48(6):1661-1677. doi: 10.1007/s10439-020-02496-y. Epub 2020 Apr 2.
3
Propagation of errors from skull kinematic measurements to finite element tissue responses.
Biomech Model Mechanobiol. 2018 Feb;17(1):235-247. doi: 10.1007/s10237-017-0957-8. Epub 2017 Aug 30.
4
An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain.
Biomech Model Mechanobiol. 2021 Apr;20(2):403-431. doi: 10.1007/s10237-020-01391-8. Epub 2020 Oct 10.
7
Displacement voxelization to resolve mesh-image mismatch: Application in deriving dense white matter fiber strains.
Comput Methods Programs Biomed. 2022 Jan;213:106528. doi: 10.1016/j.cmpb.2021.106528. Epub 2021 Nov 13.
8
Relative brain displacement and deformation during constrained mild frontal head impact.
J R Soc Interface. 2010 Dec 6;7(53):1677-88. doi: 10.1098/rsif.2010.0210. Epub 2010 May 26.
9
Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
J Mech Behav Biomed Mater. 2021 Mar;115:104302. doi: 10.1016/j.jmbbm.2020.104302. Epub 2021 Jan 5.

引用本文的文献

1
Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports.
Ann Biomed Eng. 2022 Nov;50(11):1389-1408. doi: 10.1007/s10439-022-02999-w. Epub 2022 Jul 22.
2
Cerebral vascular strains in dynamic head impact using an upgraded model with brain material property heterogeneity.
J Mech Behav Biomed Mater. 2022 Feb;126:104967. doi: 10.1016/j.jmbbm.2021.104967. Epub 2021 Nov 18.
3
Displacement voxelization to resolve mesh-image mismatch: Application in deriving dense white matter fiber strains.
Comput Methods Programs Biomed. 2022 Jan;213:106528. doi: 10.1016/j.cmpb.2021.106528. Epub 2021 Nov 13.
4
MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury.
Ann Biomed Eng. 2021 Oct;49(10):2677-2692. doi: 10.1007/s10439-021-02820-0. Epub 2021 Jul 1.

本文引用的文献

1
Ranking and Rating Bicycle Helmet Safety Performance in Oblique Impacts Using Eight Different Brain Injury Models.
Ann Biomed Eng. 2021 Mar;49(3):1097-1109. doi: 10.1007/s10439-020-02703-w. Epub 2021 Jan 21.
2
An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain.
Biomech Model Mechanobiol. 2021 Apr;20(2):403-431. doi: 10.1007/s10237-020-01391-8. Epub 2020 Oct 10.
3
Brain Strain from Motion of Sparse Markers.
Stapp Car Crash J. 2019 Nov;63:1-27. doi: 10.4271/2019-22-0001.
4
Displacement- and Strain-Based Discrimination of Head Injury Models across a Wide Range of Blunt Conditions.
Ann Biomed Eng. 2020 Jun;48(6):1661-1677. doi: 10.1007/s10439-020-02496-y. Epub 2020 Apr 2.
5
Incorporation of vasculature in a head injury model lowers local mechanical strains in dynamic impact.
J Biomech. 2020 May 7;104:109732. doi: 10.1016/j.jbiomech.2020.109732. Epub 2020 Mar 2.
6
Biomechanics of the Human Brain during Dynamic Rotation of the Head.
J Neurotrauma. 2020 Jul 1;37(13):1546-1555. doi: 10.1089/neu.2019.6847. Epub 2020 Mar 13.
7
Blast-Related Traumatic Brain Injury: Current Concepts and Research Considerations.
J Exp Neurosci. 2019 Sep 12;13:1179069519872213. doi: 10.1177/1179069519872213. eCollection 2019.
8
Technique and preliminary findings for in vivo quantification of brain motion during injurious head impacts.
J Biomech. 2019 Oct 11;95:109279. doi: 10.1016/j.jbiomech.2019.07.023. Epub 2019 Jul 27.
10
Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model.
Ann Biomed Eng. 2019 Sep;47(9):1908-1922. doi: 10.1007/s10439-019-02239-8. Epub 2019 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验