Yale Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States.
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States.
J Chem Theory Comput. 2021 Jun 8;17(6):3280-3291. doi: 10.1021/acs.jctc.1c00292. Epub 2021 May 6.
Optimization algorithms play a central role in chemistry since optimization is the computational keystone of most molecular and electronic structure calculations. Herein, we introduce the iterative power algorithm (IPA) for global optimization and a formal proof of convergence for both discrete and continuous global search problems, which is essential for applications in chemistry such as molecular geometry optimization. IPA implements the power iteration method in quantics tensor train (QTT) representations. Analogous to the imaginary time propagation method with infinite mass, IPA starts with an initial probability distribution ρ() and iteratively applies the recurrence relation ρ() = () ρ()/∥ρ∥, where () = e is defined in terms of the potential energy surface (PES) () with global minimum at = *. Upon convergence, the probability distribution becomes a delta function δ( - *), so the global minimum can be obtained as the position expectation value * = Tr[ δ( - *)]. QTT representations of () and ρ() are generated by fast adaptive interpolation of multidimensional arrays to bypass the curse of dimensionality and the need to evaluate () for all possible values of . We illustrate the capabilities of IPA for global search optimization of two multidimensional PESs, including a differentiable model PES of a DNA chain with = 50 adenine-thymine base pairs, and a discrete non-differentiable potential energy surface, () = mod(,), that resolves the prime factors of an integer , with in the space of prime numbers {2, 3,..., } folded as a -dimensional 2 × 2 × ··· × 2 tensor. We find that IPA resolves multiple degenerate global minima even when separated by large energy barriers in the highly rugged landscape of the potentials. Therefore, IPA should be of great interest for a wide range of other optimization problems ubiquitous in molecular and electronic structure calculations.
优化算法在化学中起着核心作用,因为优化是大多数分子和电子结构计算的计算关键。在此,我们引入了迭代幂算法(IPA)用于全局优化,并对离散和连续全局搜索问题进行了正式的收敛证明,这对于化学中的应用(如分子几何优化)是必不可少的。IPA 在量子张量网络(QTT)表示中实现幂迭代方法。类似于具有无穷大质量的虚时传播方法,IPA 从初始概率分布 ρ()开始,并迭代地应用递归关系 ρ()=()ρ()/∥ρ∥,其中 ()=e 是根据势能面 (PES) ()定义的,其全局最小值在 =*处。在收敛时,概率分布变为 δ( - *)函数,因此全局最小值可以通过位置期望值 * = Tr[ δ( - *)]获得。()和 ρ()的 QTT 表示通过对多维数组进行快速自适应插值生成,以避免维度诅咒和需要评估 ()的所有可能值。我们说明了 IPA 用于全局搜索优化的两个多维 PES 的能力,包括具有 = 50 个腺嘌呤-胸腺嘧啶碱基对的 DNA 链的可微模型 PES,以及一个离散的不可微势能表面 ()=mod(,), 它解析整数的素数因子,其中 在素数空间{2, 3,..., }中折叠为一个 -维 2 × 2 ×····× 2 张量。我们发现,IPA 即使在高度崎岖的势场中,多个简并的全局最小值之间存在大的能量障碍,也能解决这些最小值。因此,IPA 应该对分子和电子结构计算中普遍存在的其他各种优化问题具有很大的兴趣。