IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2208-2218. doi: 10.1109/TCBB.2021.3077905. Epub 2022 Aug 8.
Identifying drug-target interactions (DTIs) is an important step in the process of new drug discovery and drug repositioning. Accurate predictions for DTIs can improve the efficiency in the drug discovery and development. Although rapid advances in deep learning technologies have generated various computational methods, it is still appealing to further investigate how to design efficient networks for predicting DTIs. In this study, we propose an end-to-end deep learning method (called MHSADTI) to predict DTIs based on the graph attention network and multi-head self-attention mechanism. First, the characteristics of drugs and proteins are extracted by the graph attention network and multi-head self-attention mechanism, respectively. Then, the attention scores are used to consider which amino acid subsequence in a protein is more important for the drug to predict its interactions. Finally, we predict DTIs by a fully connected layer after obtaining the feature vectors of drugs and proteins. MHSADTI takes advantage of self-attention mechanism for obtaining long-dependent contextual relationship in amino acid sequences and predicting DTI interpretability. More effective molecular characteristics are also obtained by the attention mechanism in graph attention networks. Multiple cross validation experiments are adopted to assess the performance of our MHSADTI. The experiments on four datasets, human, C.elegans, DUD-E and DrugBank show our method outperforms the state-of-the-art methods in terms of AUC, Precision, Recall, AUPR and F1-score. In addition, the case studies further demonstrate that our method can provide effective visualizations to interpret the prediction results from biological insights.
鉴定药物-靶标相互作用(DTIs)是新药发现和药物重定位过程中的重要步骤。准确预测 DTIs 可以提高药物发现和开发的效率。尽管深度学习技术的快速发展产生了各种计算方法,但进一步研究如何设计有效的网络来预测 DTIs 仍然很有吸引力。在这项研究中,我们提出了一种端到端的深度学习方法(称为 MHSADTI),该方法基于图注意网络和多头自注意机制来预测 DTIs。首先,通过图注意网络和多头自注意机制分别提取药物和蛋白质的特征。然后,使用注意力得分来考虑蛋白质中的哪个氨基酸子序列对药物预测其相互作用更为重要。最后,我们通过全连接层预测药物-靶标相互作用,获得药物和蛋白质的特征向量。MHSADTI 利用自注意机制获取氨基酸序列中的长依赖上下文关系,并预测 DTI 的可解释性。图注意网络中的注意力机制还获得了更有效的分子特征。我们采用了多种交叉验证实验来评估我们的 MHSADTI 的性能。在四个数据集(人类、秀丽隐杆线虫、DUD-E 和 DrugBank)上的实验表明,我们的方法在 AUC、精度、召回率、AUPR 和 F1 分数方面优于最先进的方法。此外,案例研究进一步证明,我们的方法可以从生物学角度提供有效的可视化来解释预测结果。