Costanzo Michael, Hou Jing, Messier Vincent, Nelson Justin, Rahman Mahfuzur, VanderSluis Benjamin, Wang Wen, Pons Carles, Ross Catherine, Ušaj Matej, San Luis Bryan-Joseph, Shuteriqi Emira, Koch Elizabeth N, Aloy Patrick, Myers Chad L, Boone Charles, Andrews Brenda
The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.
Science. 2021 May 7;372(6542). doi: 10.1126/science.abf8424.
Phenotypes associated with genetic variants can be altered by interactions with other genetic variants (GxG), with the environment (GxE), or both (GxGxE). Yeast genetic interactions have been mapped on a global scale, but the environmental influence on the plasticity of genetic networks has not been examined systematically. To assess environmental rewiring of genetic networks, we examined 14 diverse conditions and scored 30,000 functionally representative yeast gene pairs for dynamic, differential interactions. Different conditions revealed novel differential interactions, which often uncovered functional connections between distantly related gene pairs. However, the majority of observed genetic interactions remained unchanged in different conditions, suggesting that the global yeast genetic interaction network is robust to environmental perturbation and captures the fundamental functional architecture of a eukaryotic cell.
与遗传变异相关的表型可通过与其他遗传变异(基因-基因相互作用,GxG)、环境(基因-环境相互作用,GxE)或两者(基因-基因-环境相互作用,GxGxE)的相互作用而改变。酵母遗传相互作用已在全球范围内进行了图谱绘制,但环境对遗传网络可塑性的影响尚未得到系统研究。为了评估遗传网络的环境重塑,我们研究了14种不同条件,并对30000个具有功能代表性的酵母基因对的动态差异相互作用进行了评分。不同条件揭示了新的差异相互作用,这些相互作用常常揭示出远缘相关基因对之间的功能联系。然而,大多数观察到的遗传相互作用在不同条件下保持不变,这表明全球酵母遗传相互作用网络对环境扰动具有鲁棒性,并捕获了真核细胞的基本功能结构。