Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133, Milan, Italy.
Eur J Nucl Med Mol Imaging. 2021 Oct;48(11):3643-3655. doi: 10.1007/s00259-021-05371-7. Epub 2021 May 7.
The objectives of our study were to assess the association of radiomic and genomic data with histology and patient outcome in non-small cell lung cancer (NSCLC).
In this retrospective single-centre observational study, we selected 151 surgically treated patients with adenocarcinoma or squamous cell carcinoma who performed baseline [18F] FDG PET/CT. A subgroup of patients with cancer tissue samples at the Institutional Biobank (n = 74/151) was included in the genomic analysis. Features were extracted from both PET and CT images using an in-house tool. The genomic analysis included detection of genetic variants, fusion transcripts, and gene expression. Generalised linear model (GLM) and machine learning (ML) algorithms were used to predict histology and tumour recurrence.
Standardised uptake value (SUV) and kurtosis (among the PET and CT radiomic features, respectively), and the expression of TP63, EPHA10, FBN2, and IL1RAP were associated with the histotype. No correlation was found between radiomic features/genomic data and relapse using GLM. The ML approach identified several radiomic/genomic rules to predict the histotype successfully. The ML approach showed a modest ability of PET radiomic features to predict relapse, while it identified a robust gene expression signature able to predict patient relapse correctly. The best-performing ML radiogenomic rule predicting the outcome resulted in an area under the curve (AUC) of 0.87.
Radiogenomic data may provide clinically relevant information in NSCLC patients regarding the histotype, aggressiveness, and progression. Gene expression analysis showed potential new biomarkers and targets valuable for patient management and treatment. The application of ML allows to increase the efficacy of radiogenomic analysis and provides novel insights into cancer biology.
本研究旨在评估影像组学和基因组数据与非小细胞肺癌(NSCLC)组织学和患者预后的相关性。
在这项回顾性单中心观察性研究中,我们选择了 151 例接受基线 [18F] FDG PET/CT 检查的腺癌或鳞状细胞癌手术治疗患者。从机构生物库中选择了具有癌症组织样本的患者亚组(n=151/151)进行基因组分析。使用内部工具从 PET 和 CT 图像中提取特征。基因组分析包括检测遗传变异、融合转录本和基因表达。广义线性模型(GLM)和机器学习(ML)算法用于预测组织学和肿瘤复发。
标准摄取值(SUV)和峰度(分别为 PET 和 CT 影像组学特征)以及 TP63、EPHA10、FBN2 和 IL1RAP 的表达与组织类型相关。GLM 未发现影像组学特征/基因组数据与复发之间的相关性。ML 方法成功识别了几个预测组织类型的放射组学/基因组规则。ML 方法显示 PET 影像组学特征预测复发的能力较弱,但确定了一个能够正确预测患者复发的稳健基因表达特征。预测结果的最佳 ML 放射基因组规则的曲线下面积(AUC)为 0.87。
放射基因组数据可能为 NSCLC 患者的组织类型、侵袭性和进展提供具有临床意义的信息。基因表达分析显示出有价值的新生物标志物和靶点,可用于患者管理和治疗。ML 的应用可以提高放射基因组分析的效果,并为癌症生物学提供新的见解。