Li Jin, Xu Jinbo
Toyota Technological Institute at Chicago, Chicago, IL 60637, USA.
Department of Computer Science, University of Chicago, Chicago, IL 60637, USA.
Bioinformatics. 2021 Oct 11;37(19):3197-3203. doi: 10.1093/bioinformatics/btab333.
Inter-residue distance prediction by convolutional residual neural network (deep ResNet) has greatly advanced protein structure prediction. Currently, the most successful structure prediction methods predict distance by discretizing it into dozens of bins. Here, we study how well real-valued distance can be predicted and how useful it is for 3D structure modeling by comparing it with discrete-valued prediction based upon the same deep ResNet.
Different from the recent methods that predict only a single real value for the distance of an atom pair, we predict both the mean and standard deviation of a distance and then fold a protein by the predicted mean and deviation. Our findings include: (i) tested on the CASP13 FM (free-modeling) targets, our real-valued distance prediction obtains 81% precision on top L/5 long-range contact prediction, much better than the best CASP13 results (70%); (ii) our real-valued prediction can predict correct folds for the same number of CASP13 FM targets as the best CASP13 group, despite generating only 20 decoys for each target; (iii) our method greatly outperforms a very new real-valued prediction method DeepDist in both contact prediction and 3D structure modeling and (iv) when the same deep ResNet is used, our real-valued distance prediction has 1-6% higher contact and distance accuracy than our own discrete-valued prediction, but less accurate 3D structure models.
https://github.com/j3xugit/RaptorX-3DModeling.
Supplementary data are available at Bioinformatics online.
通过卷积残差神经网络(深度残差网络)进行残基间距离预测极大地推动了蛋白质结构预测的发展。目前,最成功的结构预测方法通过将距离离散化为几十个区间来预测距离。在此,我们通过将基于相同深度残差网络的实值距离预测与离散值预测进行比较,研究实值距离的预测效果以及它对三维结构建模的有用性。
与近期仅预测原子对距离单一实值的方法不同,我们预测距离的均值和标准差,然后根据预测的均值和标准差对蛋白质进行折叠。我们的研究结果包括:(i)在CASP13 FM(自由建模)目标上进行测试时,我们的实值距离预测在顶级L/5长程接触预测上获得了81%的精度,远优于最佳的CASP13结果(70%);(ii)我们的实值预测能够为与最佳CASP13团队相同数量的CASP13 FM目标预测出正确的折叠结构,尽管每个目标仅生成20个诱饵结构;(iii)在接触预测和三维结构建模方面,我们的方法都大大优于一种非常新的实值预测方法DeepDist;(iv)当使用相同的深度残差网络时,我们的实值距离预测在接触和距离准确性方面比我们自己的离散值预测高1 - 6%,但三维结构模型的准确性较低。
https://github.com/j3xugit/RaptorX-3DModeling。
补充数据可在《生物信息学》在线获取。