Suppr超能文献

用于电子激发态的轨道优化密度泛函理论

Orbital Optimized Density Functional Theory for Electronic Excited States.

作者信息

Hait Diptarka, Head-Gordon Martin

机构信息

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

J Phys Chem Lett. 2021 May 20;12(19):4517-4529. doi: 10.1021/acs.jpclett.1c00744. Epub 2021 May 7.

Abstract

Density functional theory (DFT) based modeling of electronic excited states is of importance for investigation of the photophysical/photochemical properties and spectroscopic characterization of large systems. The widely used linear response time-dependent DFT (TDDFT) approach is, however, not effective at modeling many types of excited states, including (but not limited to) charge-transfer states, doubly excited states, and core-level excitations. In this perspective, we discuss state-specific orbital optimized (OO) DFT approaches as an alterative to TDDFT for electronic excited states. We motivate the use of OO-DFT methods and discuss reasons behind their relatively restricted historical usage (vs TDDFT). We subsequently highlight modern developments that address these factors and allow efficient and reliable OO-DFT computations. Several successful applications of OO-DFT for challenging electronic excitations are also presented, indicating their practical efficacy. OO-DFT approaches are thus increasingly becoming a useful route for computing excited states of large chemical systems. We conclude by discussing the limitations and challenges still facing OO-DFT methods, as well as some potential avenues for addressing them.

摘要

基于密度泛函理论(DFT)的电子激发态建模对于研究大体系的光物理/光化学性质及光谱表征具有重要意义。然而,广泛使用的线性响应含时密度泛函理论(TDDFT)方法在对多种类型的激发态进行建模时并不有效,这些激发态包括(但不限于)电荷转移态、双激发态和芯能级激发。从这个角度出发,我们讨论特定态轨道优化(OO)DFT方法,作为用于电子激发态的TDDFT的替代方法。我们阐述了使用OO-DFT方法的动机,并讨论了其历史使用相对受限(与TDDFT相比)背后的原因。随后,我们重点介绍了应对这些因素并实现高效可靠的OO-DFT计算的现代进展。还展示了OO-DFT在具有挑战性的电子激发方面的几个成功应用,表明了它们的实际功效。因此,OO-DFT方法正日益成为计算大型化学体系激发态的一条有用途径。我们通过讨论OO-DFT方法仍然面临的局限性和挑战,以及一些应对它们的潜在途径来进行总结。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验