Kussmann Jörg, Lemke Yannick, Weinbrenner Anthea, Ochsenfeld Christian
Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität in Munich (LMU), München D-81377, Germany.
Max-Planck-Institute for Solid State Research, Stuttgart D-70659, Germany.
J Chem Theory Comput. 2024 Oct 8;20(19):8461-8473. doi: 10.1021/acs.jctc.4c00467. Epub 2024 Sep 30.
In this work, we present a novel method to directly calculate targeted electronic excited states within a self-consistent field calculation based on constrained density functional theory (cDFT). The constraint is constructed from the static occupied-occupied and virtual-virtual parts of the excited state difference density from (simplified) linear-response time-dependent density functional theory calculations (LR-TDDFT). Our new method shows a stable convergence behavior, provides an accurate excited state density adhering to the Aufbau principle, and can be solved within a restricted SCF for singlet excitations to avoid spin contamination. This also allows the straightforward application of post-SCF electron-correlation methods like MP2 or direct RPA methods. We present the details of our constraint-based orbital-optimized excited state method (COOX) and compare it to similar schemes. The accuracy of excitation energies will be analyzed for a benchmark of systems, while the quality of the resulting excited state densities is investigated by evaluating excited state nuclear forces and excited state structure optimizations. We also investigate the performance of the proposed COOX method for long-range charge transfer excitations and conical intersections with the ground-state.
在这项工作中,我们提出了一种基于约束密度泛函理论(cDFT)在自洽场计算中直接计算目标电子激发态的新方法。该约束由(简化的)线性响应含时密度泛函理论计算(LR-TDDFT)中激发态差分密度的静态占据-占据部分和空穴-空穴部分构建而成。我们的新方法显示出稳定的收敛行为,能提供符合构造原理的精确激发态密度,并且对于单重激发可在受限自洽场中求解以避免自旋污染。这也使得像MP2或直接RPA方法等自洽场后电子相关方法能够直接应用。我们展示了基于约束的轨道优化激发态方法(COOX)的细节,并将其与类似方案进行比较。对于一系列基准系统,将分析激发能的准确性,同时通过评估激发态核力和激发态结构优化来研究所得激发态密度的质量。我们还研究了所提出的COOX方法在长程电荷转移激发以及与基态的锥形交叉方面的性能。