Suppr超能文献

心外膜动脉狭窄下游的冠状动脉微血管适应性改变。

Coronary microvascular adaptations distal to epicardial artery stenosis.

机构信息

Institute for Surgical Research, Walter Brendel Center of Experimental Medicine (WBex), University Clinic, LMU Munich, Munich, Germany.

German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Munich, Germany.

出版信息

Am J Physiol Heart Circ Physiol. 2021 Jun 1;320(6):H2351-H2370. doi: 10.1152/ajpheart.00992.2020. Epub 2021 May 7.

Abstract

Until recently, epicardial coronary stenosis has been considered the primary outcome of coronary heart disease, and clinical interventions have been dedicated primarily to the identification and removal of flow-limiting stenoses. However, a growing body of literature indicates that both epicardial stenosis and microvascular dysfunction contribute to damaging myocardial ischemia. In this review, we discuss the coexistence of macro- and microvascular disease, and how the structure and function of the distal microcirculation is impacted by the hemodynamic consequences of an epicardial, flow-limiting stenosis. Mechanisms of endothelial dysfunction as well as alterations of smooth muscle function in the coronary microcirculation distal to stenosis are discussed. Risk factors including diabetes, metabolic syndrome, and aging exacerbate microvascular dysfunction in the myocardium distal to a stenosis, and our current understanding of the role of these factors in limiting collateralization and angiogenesis of the ischemic myocardium is presented. Importantly, exercise training has been shown to promote collateral growth and improve microvascular function distal to stenosis; thus, the current literature reporting the mechanisms that underlie the beneficial effects of exercise training in the microcirculation distal to epicardial stenosis is reviewed. We also discuss recent studies of therapeutic interventions designed to improve microvascular function and stimulate angiogenesis in clinically relevant animal models of epicardial stenosis and microvascular disease. Finally, microvascular adaptation to removal of epicardial stenosis is considered.

摘要

直到最近,心外膜冠状狭窄才被认为是冠心病的主要结果,临床干预主要致力于识别和消除限制血流的狭窄。然而,越来越多的文献表明,心外膜狭窄和微血管功能障碍都导致心肌缺血损伤。在这篇综述中,我们讨论了大血管和微血管疾病的共存,以及心外膜、血流受限狭窄的血流动力学后果如何影响远端微循环的结构和功能。我们讨论了内皮功能障碍的机制以及狭窄远端冠状动脉微循环中平滑肌功能的改变。包括糖尿病、代谢综合征和衰老在内的危险因素会加重狭窄远端心肌的微血管功能障碍,我们目前对这些因素在限制缺血心肌侧支循环和血管生成中的作用的理解也在本文中呈现。重要的是,运动训练已被证明可促进侧支生长并改善狭窄远端的微血管功能;因此,本文还回顾了目前关于运动训练在心外膜狭窄远端微循环中有益作用的机制的研究。我们还讨论了最近的一些研究,这些研究旨在改善心外膜狭窄和微血管疾病的临床相关动物模型中的微血管功能和刺激血管生成。最后,还考虑了心外膜狭窄消除后的微血管适应。

相似文献

1
Coronary microvascular adaptations distal to epicardial artery stenosis.
Am J Physiol Heart Circ Physiol. 2021 Jun 1;320(6):H2351-H2370. doi: 10.1152/ajpheart.00992.2020. Epub 2021 May 7.
2
Regulation of coronary blood flow during exercise.
Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006.
3
Remodeling of small intramyocardial coronary arteries distal to a severe epicardial coronary artery stenosis.
Arterioscler Thromb Vasc Biol. 2002 Dec 1;22(12):2059-65. doi: 10.1161/01.atv.0000041844.54849.7e.
5
Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation.
Circulation. 2004 May 18;109(19):2269-72. doi: 10.1161/01.CIR.0000128669.99355.CB. Epub 2004 May 10.
7
Transmural variation in microvascular remodeling following percutaneous revascularization of a chronic coronary stenosis in swine.
Am J Physiol Heart Circ Physiol. 2020 Mar 1;318(3):H696-H705. doi: 10.1152/ajpheart.00502.2019. Epub 2020 Feb 14.
9
Microvascular function/dysfunction downstream a coronary stenosis.
Curr Pharm Des. 2013;19(13):2366-74. doi: 10.2174/1381612811319130004.

引用本文的文献

1
Coronary artery stenosis associated with right ventricular dysfunction in acute pulmonary embolism: A case-control study.
Chin Med J (Engl). 2025 Aug 20;138(16):2028-2036. doi: 10.1097/CM9.0000000000003729. Epub 2025 Jul 21.
2
Sexually dimorphic mechanisms of HO-mediated dilation in porcine coronary arterioles with ischemia and endurance exercise training.
J Appl Physiol (1985). 2025 Apr 1;138(4):950-963. doi: 10.1152/japplphysiol.00761.2024. Epub 2025 Mar 10.
3
Enhancing cardiac assessments: accurate and efficient prediction of quantitative fractional flow reserve.
Front Bioeng Biotechnol. 2025 Jan 27;13:1438253. doi: 10.3389/fbioe.2025.1438253. eCollection 2025.
5
Microvascular resistance reserve in relation to total and vessel-specific atherosclerotic burden.
Eur Heart J Cardiovasc Imaging. 2025 Mar 3;26(3):481-488. doi: 10.1093/ehjci/jeae293.
6
Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond.
J Mol Cell Cardiol. 2024 Jul;192:26-35. doi: 10.1016/j.yjmcc.2024.05.004. Epub 2024 May 10.
7
[Correlation between insulin resistance and coronary collateral circulation in patients with chronic total coronary occlusion].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Apr 20;44(4):780-786. doi: 10.12122/j.issn.1673-4254.2024.04.21.
10
K channels in the coronary microvasculature of the ischemic heart.
Curr Top Membr. 2022;90:141-166. doi: 10.1016/bs.ctm.2022.09.004. Epub 2022 Oct 12.

本文引用的文献

1
Enhanced KCl-mediated contractility and Ca sensitization in porcine collateral-dependent coronary arteries persist after exercise training.
Am J Physiol Heart Circ Physiol. 2020 Oct 1;319(4):H915-H926. doi: 10.1152/ajpheart.00384.2020. Epub 2020 Aug 28.
2
Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When.
JACC Cardiovasc Interv. 2020 Aug 24;13(16):1847-1864. doi: 10.1016/j.jcin.2020.05.052.
3
Coronary physiology before and after chronic total occlusion treatment: what does it tell us?
Neth Heart J. 2021 Jan;29(1):22-29. doi: 10.1007/s12471-020-01470-6.
4
Different Microcirculation Response Between Culprit and Non-Culprit Vessels in Patients With Acute Coronary Syndrome.
J Am Heart Assoc. 2020 May 18;9(10):e015507. doi: 10.1161/JAHA.119.015507. Epub 2020 May 15.
6
Transmural variation in microvascular remodeling following percutaneous revascularization of a chronic coronary stenosis in swine.
Am J Physiol Heart Circ Physiol. 2020 Mar 1;318(3):H696-H705. doi: 10.1152/ajpheart.00502.2019. Epub 2020 Feb 14.
7
Experimental animal models of coronary microvascular dysfunction.
Cardiovasc Res. 2020 Mar 1;116(4):756-770. doi: 10.1093/cvr/cvaa002.
9
A Novel Large Animal Model of Thrombogenic Coronary Microembolization.
Front Cardiovasc Med. 2019 Nov 5;6:157. doi: 10.3389/fcvm.2019.00157. eCollection 2019.
10
Downstream Influence of Coronary Stenoses on Microcirculatory Remodeling: A Histopathology Study.
Arterioscler Thromb Vasc Biol. 2020 Jan;40(1):230-238. doi: 10.1161/ATVBAHA.119.313462. Epub 2019 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验