Suppr超能文献

神经网络策略在荧光显微镜图像中用于质膜选择。

Neural network strategies for plasma membrane selection in fluorescence microscopy images.

机构信息

Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.

Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.

出版信息

Biophys J. 2021 Jun 15;120(12):2374-2385. doi: 10.1016/j.bpj.2021.04.030. Epub 2021 May 4.

Abstract

In recent years, there has been an explosion of fluorescence microscopy studies of live cells in the literature. The analysis of the images obtained in these studies often requires labor-intensive manual annotation to extract meaningful information. In this study, we explore the utility of a neural network approach to recognize, classify, and select plasma membranes in high-resolution images, thus greatly speeding up data analysis and reducing the need for personnel training for highly repetitive tasks. Two different strategies are tested: 1) a semantic segmentation strategy, and 2) a sequential application of an object detector followed by a semantic segmentation network. Multiple network architectures are evaluated for each strategy, and the best performing solutions are combined and implemented in the Recognition Of Cellular Membranes software. We show that images annotated manually and with the Recognition Of Cellular Membranes software yield identical results by comparing Förster resonance energy transfer binding curves for the membrane protein fibroblast growth factor receptor 3. The approach that we describe in this work can be applied to other image selection tasks in cell biology.

摘要

近年来,文献中关于活细胞荧光显微镜研究的数量呈爆炸式增长。这些研究中获得的图像分析通常需要耗费大量人力进行手动注释,以提取有意义的信息。在这项研究中,我们探索了神经网络方法在识别、分类和选择高分辨率图像中的质膜方面的应用,从而大大加快了数据分析速度,减少了对高度重复任务的人员培训需求。我们测试了两种不同的策略:1)语义分割策略,和 2)先应用对象检测器,再应用语义分割网络的顺序应用策略。我们评估了每种策略的多种网络架构,并将表现最佳的解决方案组合并在“识别细胞膜”软件中实现。我们通过比较膜蛋白成纤维细胞生长因子受体 3 的Förster 共振能量转移结合曲线,证明了用 Recognition Of Cellular Membranes 软件手动注释和标注的图像得出了相同的结果。我们在这项工作中描述的方法可以应用于细胞生物学中的其他图像选择任务。

相似文献

6
Automatic image annotation for fluorescent cell nuclei segmentation.用于荧光细胞核分割的自动图像标注
PLoS One. 2021 Apr 16;16(4):e0250093. doi: 10.1371/journal.pone.0250093. eCollection 2021.
10
Image generation by GAN and style transfer for agar plate image segmentation.基于 GAN 和风格迁移的琼脂平板图像分割的图像生成。
Comput Methods Programs Biomed. 2020 Feb;184:105268. doi: 10.1016/j.cmpb.2019.105268. Epub 2019 Dec 17.

本文引用的文献

1
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
2
Ligand bias in receptor tyrosine kinase signaling.配体偏倚在受体酪氨酸激酶信号转导中的作用。
J Biol Chem. 2020 Dec 25;295(52):18494-18507. doi: 10.1074/jbc.REV120.015190. Epub 2020 Oct 29.
3
A bird's-eye view of deep learning in bioimage analysis.生物图像分析中深度学习的鸟瞰图。
Comput Struct Biotechnol J. 2020 Aug 7;18:2312-2325. doi: 10.1016/j.csbj.2020.08.003. eCollection 2020.
4
Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review.自动驾驶中用于激光雷达点云的深度学习:综述
IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3412-3432. doi: 10.1109/TNNLS.2020.3015992. Epub 2021 Aug 3.
7
Prediction and targeting of GPCR oligomer interfaces.GPCR 寡聚体界面的预测和靶向。
Prog Mol Biol Transl Sci. 2020;169:105-149. doi: 10.1016/bs.pmbts.2019.11.007. Epub 2020 Jan 6.
8
Face Recognition Systems: A Survey.人脸识别系统:综述。
Sensors (Basel). 2020 Jan 7;20(2):342. doi: 10.3390/s20020342.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验