Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
Biophys J. 2021 Jun 15;120(12):2374-2385. doi: 10.1016/j.bpj.2021.04.030. Epub 2021 May 4.
In recent years, there has been an explosion of fluorescence microscopy studies of live cells in the literature. The analysis of the images obtained in these studies often requires labor-intensive manual annotation to extract meaningful information. In this study, we explore the utility of a neural network approach to recognize, classify, and select plasma membranes in high-resolution images, thus greatly speeding up data analysis and reducing the need for personnel training for highly repetitive tasks. Two different strategies are tested: 1) a semantic segmentation strategy, and 2) a sequential application of an object detector followed by a semantic segmentation network. Multiple network architectures are evaluated for each strategy, and the best performing solutions are combined and implemented in the Recognition Of Cellular Membranes software. We show that images annotated manually and with the Recognition Of Cellular Membranes software yield identical results by comparing Förster resonance energy transfer binding curves for the membrane protein fibroblast growth factor receptor 3. The approach that we describe in this work can be applied to other image selection tasks in cell biology.
近年来,文献中关于活细胞荧光显微镜研究的数量呈爆炸式增长。这些研究中获得的图像分析通常需要耗费大量人力进行手动注释,以提取有意义的信息。在这项研究中,我们探索了神经网络方法在识别、分类和选择高分辨率图像中的质膜方面的应用,从而大大加快了数据分析速度,减少了对高度重复任务的人员培训需求。我们测试了两种不同的策略:1)语义分割策略,和 2)先应用对象检测器,再应用语义分割网络的顺序应用策略。我们评估了每种策略的多种网络架构,并将表现最佳的解决方案组合并在“识别细胞膜”软件中实现。我们通过比较膜蛋白成纤维细胞生长因子受体 3 的Förster 共振能量转移结合曲线,证明了用 Recognition Of Cellular Membranes 软件手动注释和标注的图像得出了相同的结果。我们在这项工作中描述的方法可以应用于细胞生物学中的其他图像选择任务。