Suppr超能文献

CD8+ T 细胞耗竭恒河猴体内戊型肝炎病毒感染的清除。

Resolution of hepatitis E virus infection in CD8+ T cell-depleted rhesus macaques.

机构信息

Center for Vaccines and Immunity, The Research Institute at Nationwide Children's, 700 Children's Drive, Columbus, OH, USA.

Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.

出版信息

J Hepatol. 2021 Sep;75(3):557-564. doi: 10.1016/j.jhep.2021.04.036. Epub 2021 May 4.

Abstract

BACKGROUND & AIMS: HEV is a significant cause of acute hepatitis globally. Some genotypes establish persistent infection when immunity is impaired. Adaptive immune mechanisms that mediate resolution of infection have not been identified. Herein, the requirement for CD8+ T cells to control HEV infection was assessed in rhesus macaques, a model of acute and persistent HEV infection in humans.

METHODS

Rhesus macaques were untreated or treated with depleting anti-CD8α monoclonal antibodies before challenge with an HEV genotype (gt)3 isolate derived from a chronically infected human patient. HEV replication, alanine aminotransferase, anti-capsid antibody and HEV-specific CD4+ and CD8+ T cell responses were assessed after infection.

RESULTS

HEV control in untreated macaques coincided with the onset of a neutralizing IgG response against the ORF2 capsid and liver infiltration of functional HEV-specific CD4+ and CD8+ T cells. Virus control was delayed by 1 week in CD8+ T cell-depleted macaques. Infection resolved with onset of a neutralizing IgG antibody response and a much more robust expansion of CD4+ T cells with antiviral effector function.

CONCLUSIONS

Liver infiltration of functional CD8+ T cells coincident with HEV clearance in untreated rhesus macaques, and a 1-week delay in HEV clearance in CD8+ T cell-depleted rhesus macaques, support a role for this subset in timely control of virus replication. Resolution of infection in the absence of CD8+ T cells nonetheless indicates that neutralizing antibodies and/or CD4+ T cells may act autonomously to inhibit HEV replication. HEV susceptibility to multiple adaptive effector mechanisms may explain why persistence occurs only with generalized immune suppression. The findings also suggest that neutralizing antibodies and/or CD4+ T cells should be considered as a component of immunotherapy for chronic infection.

LAY SUMMARY

The hepatitis E virus (HEV) is a major cause of liver disease globally. Some genetic types (genotypes) of HEV persist in the body if immunity is impaired. Our objective was to identify immune responses that promote clearance of HEV. Findings indicate that HEV may be susceptible to multiple arms of the immune response that can act independently to terminate infection. They also provide a pathway to assess immune therapies for chronic HEV infection.

摘要

背景与目的

戊型肝炎病毒(HEV)是全球范围内引起急性肝炎的重要原因。当免疫受损时,某些基因型会导致持续性感染。尚未确定介导感染清除的适应性免疫机制。本研究旨在评估适应性免疫细胞(CD8+ T 细胞)在恒河猴(人类急性和持续性 HEV 感染的模型)中对 HEV 感染的控制作用。

方法

用耗竭型抗 CD8α 单克隆抗体对恒河猴进行预处理或未处理,然后用源自慢性感染患者的 HEV 基因型(gt)3 分离株进行攻毒。感染后评估 HEV 复制、丙氨酸氨基转移酶、抗衣壳抗体以及 HEV 特异性 CD4+和 CD8+ T 细胞反应。

结果

未经处理的恒河猴中,HEV 的控制与针对 ORF2 衣壳的中和 IgG 反应的出现以及具有抗病毒效应功能的功能性 HEV 特异性 CD4+和 CD8+ T 细胞在肝脏中的浸润同时发生。CD8+ T 细胞耗竭的恒河猴中,病毒控制延迟了 1 周。随着中和 IgG 抗体反应的出现以及具有抗病毒效应功能的 CD4+ T 细胞的大量扩增,感染得到了缓解。

结论

未经处理的恒河猴中,功能性 CD8+ T 细胞浸润与 HEV 清除同时发生,CD8+ T 细胞耗竭的恒河猴中 HEV 清除延迟了 1 周,这支持了该亚群在及时控制病毒复制中的作用。但是,在没有 CD8+ T 细胞的情况下,感染得到了缓解,这表明中和抗体和/或 CD4+ T 细胞可能独立于抑制 HEV 复制而发挥作用。HEV 可能对多种适应性效应机制敏感,这可以解释为什么只有在全身免疫抑制时才会发生持续性感染。研究结果还表明,中和抗体和/或 CD4+ T 细胞应被视为慢性感染免疫治疗的一个组成部分。

要点总结

戊型肝炎病毒(HEV)是全球范围内肝脏疾病的主要原因。如果免疫受损,某些类型(基因型)的 HEV 会在体内持续存在。本研究的目的是确定促进 HEV 清除的免疫反应。研究结果表明,HEV 可能易受多种免疫反应的影响,这些反应可以独立作用以终止感染。这也为评估慢性 HEV 感染的免疫治疗方法提供了途径。

相似文献

1
Resolution of hepatitis E virus infection in CD8+ T cell-depleted rhesus macaques.
J Hepatol. 2021 Sep;75(3):557-564. doi: 10.1016/j.jhep.2021.04.036. Epub 2021 May 4.
3
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.
4
NIH Consensus Statement on Management of Hepatitis C: 2002.
NIH Consens State Sci Statements. 2002;19(3):1-46.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Structured treatment interruptions (STI) in chronic unsuppressed HIV infection in adults.
Cochrane Database Syst Rev. 2006 Jul 19;2006(3):CD006148. doi: 10.1002/14651858.CD006148.
7
8
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
9
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
10
Antiretroviral post-exposure prophylaxis (PEP) for occupational HIV exposure.
Cochrane Database Syst Rev. 2007 Jan 24;2007(1):CD002835. doi: 10.1002/14651858.CD002835.pub3.

引用本文的文献

1
3
Puzzles for Hepatitis E Virus.
Adv Exp Med Biol. 2023;1417:247-256. doi: 10.1007/978-981-99-1304-6_17.
4
Animal Models for Hepatitis E Virus.
Adv Exp Med Biol. 2023;1417:171-184. doi: 10.1007/978-981-99-1304-6_12.
5
Immunobiology and Host Response to HEV.
Adv Exp Med Biol. 2023;1417:93-118. doi: 10.1007/978-981-99-1304-6_7.
6
Soluble ORF2 protein enhances HEV replication and induces long-lasting antibody response and protective immunity in vivo.
Hepatology. 2023 Dec 1;78(6):1867-1881. doi: 10.1097/HEP.0000000000000421. Epub 2023 Apr 27.
7
Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment.
Vaccines (Basel). 2023 Mar 17;11(3):681. doi: 10.3390/vaccines11030681.
8
The pivotal role of CD8+ T cells in hepatitis E virus infection.
J Hepatol. 2022 Oct;77(4):909-911. doi: 10.1016/j.jhep.2022.08.002. Epub 2022 Aug 14.
9
Identification and pathogenicity of hepatitis E Virus from laboratory Bama miniature pigs.
BMC Vet Res. 2022 Mar 15;18(1):99. doi: 10.1186/s12917-022-03206-7.

本文引用的文献

1
Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo.
Nat Med. 2020 Nov;26(11):1776-1787. doi: 10.1038/s41591-020-1039-5. Epub 2020 Aug 31.
2
Clinical Manifestations, Pathogenesis and Treatment of Hepatitis E Virus Infections.
J Clin Med. 2020 Jan 24;9(2):331. doi: 10.3390/jcm9020331.
3
Transmission of Rat Hepatitis E Virus Infection to Humans in Hong Kong: A Clinical and Epidemiological Analysis.
Hepatology. 2021 Jan;73(1):10-22. doi: 10.1002/hep.31138. Epub 2020 Oct 12.
4
Regulation of the germinal center and humoral immunity by interleukin-21.
J Exp Med. 2020 Jan 6;217(1). doi: 10.1084/jem.20191638.
5
6
The Clinical Perspective on Hepatitis E.
Viruses. 2019 Jul 5;11(7):617. doi: 10.3390/v11070617.
7
Animal Models for Hepatitis E virus.
Viruses. 2019 Jun 18;11(6):564. doi: 10.3390/v11060564.
8
Defining virus-specific CD8+ TCR repertoires for therapeutic regeneration of T cells against chronic hepatitis E.
J Hepatol. 2019 Oct;71(4):673-684. doi: 10.1016/j.jhep.2019.06.005. Epub 2019 Jun 14.
9
Convalescent plasma therapy for persistent hepatitis E virus infection.
J Hepatol. 2019 Aug;71(2):434-438. doi: 10.1016/j.jhep.2019.04.008. Epub 2019 May 8.
10
Adaptive Immune Responses in Hepatitis A Virus and Hepatitis E Virus Infections.
Cold Spring Harb Perspect Med. 2019 Sep 3;9(9):a033472. doi: 10.1101/cshperspect.a033472.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验