Suppr超能文献

神经血管调节:经颅电刺激初级血管反应的综述作为一种作用机制。

Neurovascular-modulation: A review of primary vascular responses to transcranial electrical stimulation as a mechanism of action.

机构信息

Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Department of Biomedical Engineering, The City College of New York (CCNY), New York, NY, USA.

出版信息

Brain Stimul. 2021 Jul-Aug;14(4):837-847. doi: 10.1016/j.brs.2021.04.015. Epub 2021 May 4.

Abstract

BACKGROUND

The ubiquitous vascular response to transcranial electrical stimulation (tES) has been attributed to the secondary effect of neuronal activity forming the classic neurovascular coupling. However, the current density delivered transcranially concentrates in: A) the cerebrospinal fluid of subarachnoid space where cerebral vasculature resides after reaching the dural and pial surfaces and B) across the blood-brain-barrier after reaching the brain parenchyma. Therefore, it is anticipated that tES has a primary vascular influence.

OBJECTIVES

Focused review of studies that demonstrated the direct vascular response to electrical stimulation and studies demonstrating evidence for tES-induced vascular effect in coupled neurovascular systems.

RESULTS

tES induces both primary and secondary vascular phenomena originating from four cellular elements; the first two mediating a primary vascular phenomenon mainly in the form of an immediate vasodilatory response and the latter two leading to secondary vascular effects and as parts of classic neurovascular coupling: 1) The perivascular nerves of more superficially located dural and pial arteries and medium-sized arterioles with multilayered smooth muscle cells; and 2) The endothelial lining of all vessels including microvasculature of blood-brain barrier; 3) Astrocytes; and 4) Neurons of neurovascular units.

CONCLUSION

A primary vascular effect of tES is highly suggested based on various preclinical and clinical studies. We explain how the nature of vascular response can depend on vessel anatomy (size) and physiology and be controlled by stimulation waveform. Further studies are warranted to investigate the mechanisms underlying the vascular response and its contribution to neural activity in both healthy brain and pathological conditions - recognizing many brain diseases are associated with alteration of cerebral hemodynamics and decoupling of neurovascular units.

摘要

背景

经颅电刺激(tES)普遍存在的血管反应归因于神经元活动形成经典神经血管耦合的次级效应。然而,经颅传递的电流密度集中在:A)蛛网膜下腔的脑脊液中,在到达硬脑膜和软脑膜表面后,脑血管就位于此处,B)在到达脑实质后穿过血脑屏障。因此,预计 tES 具有主要的血管影响。

目的

综述证明电刺激直接血管反应的研究和证明在耦合神经血管系统中 tES 诱导血管效应的证据的研究。

结果

tES 诱导源自四个细胞成分的原发性和继发性血管现象;前两种主要以即刻血管扩张反应的形式介导原发性血管现象,后两种导致继发性血管效应,并作为经典神经血管耦合的一部分:1)更浅层硬脑膜和软脑膜动脉和中层小动脉的血管周围神经,具有多层平滑肌细胞;和 2)所有血管的内皮衬里,包括血脑屏障的微血管;3)星形胶质细胞;和 4)神经血管单元的神经元。

结论

基于各种临床前和临床研究,强烈提示 tES 具有原发性血管效应。我们解释了血管反应的性质如何取决于血管解剖结构(大小)和生理学,并受刺激波形的控制。需要进一步的研究来探讨血管反应的机制及其对健康大脑和病理条件下神经活动的贡献-认识到许多脑部疾病都与脑血流动力学改变和神经血管单元解偶联有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验