Arora Yashika, Dutta Anirban
Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurugram, India.
School of Engineering, University of Lincoln, Lincoln, United Kingdom.
Front Neurol. 2023 Jan 9;13:1038700. doi: 10.3389/fneur.2022.1038700. eCollection 2022.
Transcranial electrical stimulation (tES) can modulate the neurovascular unit, including the perivascular space morphology, but the mechanisms are unclear. In this perspective article, we used an open-source "rsHRF toolbox" and an open-source functional magnetic resonance imaging (fMRI) transcranial direct current stimulation (tDCS) data set to show the effects of tDCS on the temporal profile of the haemodynamic response function (HRF). We investigated the effects of tDCS in the gray matter and at three regions of interest in the gray matter, namely, the anodal electrode (FC5), cathodal electrode (FP2), and an independent site remote from the electrodes (PZ). A "canonical HRF" with time and dispersion derivatives and a finite impulse response (FIR) model with three parameters captured the effects of anodal tDCS on the temporal profile of the HRF. The FIR model showed tDCS onset effects on the temporal profile of HRF for verum and sham tDCS conditions that were different from the no tDCS condition, which questions the validity of the sham tDCS (placebo). Here, we postulated that the effects of tDCS onset on the temporal profile of HRF are subserved by the effects on neurovascular coupling. We provide our perspective based on previous work on tES effects on the neurovascular unit, including mechanistic grey-box modeling of the effects of tES on the vasculature that can facilitate model predictive control (MPC). Future studies need to investigate grey-box modeling of online effects of tES on the neurovascular unit, including perivascular space, neurometabolic coupling, and neurovascular coupling, that can facilitate MPC of the tES dose-response to address the momentary ("state") and phenotypic ("trait") factors.
经颅电刺激(tES)可调节神经血管单元,包括血管周围间隙形态,但其机制尚不清楚。在这篇观点文章中,我们使用了一个开源的“rsHRF工具箱”和一个开源的功能磁共振成像(fMRI)经颅直流电刺激(tDCS)数据集,以显示tDCS对血流动力学响应函数(HRF)时间分布的影响。我们研究了tDCS在灰质以及灰质中三个感兴趣区域的影响,即阳极电极(FC5)、阴极电极(FP2)以及远离电极的独立位点(PZ)。一个具有时间和离散导数的“典型HRF”以及一个具有三个参数的有限脉冲响应(FIR)模型捕捉到了阳极tDCS对HRF时间分布的影响。FIR模型显示,在真刺激和假刺激tDCS条件下,tDCS起始对HRF时间分布的影响与无tDCS条件不同,这对假刺激tDCS(安慰剂)的有效性提出了质疑。在此,我们推测tDCS起始对HRF时间分布的影响是由对神经血管耦合的影响所介导的。我们基于之前关于tES对神经血管单元影响的工作提供了我们的观点,包括tES对血管系统影响的机制灰箱建模,这有助于模型预测控制(MPC)。未来的研究需要研究tES对神经血管单元在线影响的灰箱建模,包括血管周围间隙、神经代谢耦合和神经血管耦合,这有助于tES剂量反应的MPC,以解决瞬时(“状态”)和表型(“特征”)因素。