Stefanski Marcel, Arora Yashika, Cheung Mancheung, Dutta Anirban
School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK.
Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA.
Brain Sci. 2024 Jun 10;14(6):591. doi: 10.3390/brainsci14060591.
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular unit (NVU), employing a physiological modeling approach to simulate the vascular response to electric fields generated by tES. Utilizing the FitzHugh-Nagumo model for neuroelectrical activity, we demonstrate how tES can initiate vascular responses such as vasoconstriction followed by delayed vasodilation in cerebral arterioles, potentially modulated by a combination of local metabolic demands and autonomic regulation (pivotal locus coeruleus). Here, four distinct pathways within the NVU were modeled to reflect the complex interplay between synaptic activity, astrocytic influences, perivascular potassium dynamics, and smooth muscle cell responses. Modal analysis revealed characteristic dynamics of these pathways, suggesting that oscillatory tES may finely tune the vascular tone by modulating the stiffness and elasticity of blood vessel walls, possibly by also impacting endothelial glycocalyx function. The findings underscore the therapeutic potential vis-à-vis blood-brain barrier safety of tES in modulating neurovascular coupling and cognitive function needing the precise modulation of NVU dynamics. This technology review supports the human-in-the-loop integration of tES leveraging digital health technologies for the personalized management of cerebral blood flow, offering new avenues for treating vascular cognitive disorders. Future studies should aim to optimize tES parameters using computational modeling and validate these models in clinical settings, enhancing the understanding of tES in neurovascular health.
经颅电刺激(tES)因其调节脑血流量(CBF)和诱发脑血管反应性(CVR)的潜力而日益受到认可,这在轻度认知障碍(MCI)和痴呆等病症中至关重要。本研究采用生理建模方法模拟tES产生的电场对血管的反应,探讨tES对神经血管单元(NVU)的影响。利用FitzHugh-Nagumo神经电活动模型,我们展示了tES如何引发血管反应,如脑小动脉的血管收缩,随后是延迟的血管舒张,这可能受局部代谢需求和自主调节(关键位点蓝斑)的组合调节。在此,对NVU内的四条不同途径进行建模,以反映突触活动、星形胶质细胞影响、血管周围钾动力学和平滑肌细胞反应之间的复杂相互作用。模态分析揭示了这些途径的特征动力学,表明振荡性tES可能通过调节血管壁的硬度和弹性来精细调节血管张力,也可能通过影响内皮糖萼功能来实现。这些发现强调了tES在调节神经血管耦合和需要精确调节NVU动力学的认知功能方面对血脑屏障安全性的治疗潜力。本技术综述支持将tES与数字健康技术进行人在回路中的整合,以实现脑血流量的个性化管理,为治疗血管性认知障碍提供新途径。未来的研究应旨在使用计算建模优化tES参数,并在临床环境中验证这些模型,以增强对tES在神经血管健康方面的理解。