Zhang Hao, Ji Hongfei, Yu Jian, Li Jie, Jin Lingjing, Liu Lingyu, Bai Zhongfei, Ye Chen
Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Electronic and Information Engineering, Tongji University, Shanghai, China.
Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Person's Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
Front Neurosci. 2023 Jun 2;17:1124089. doi: 10.3389/fnins.2023.1124089. eCollection 2023.
A brain-computer interface (BCI) based on the electroencephalograph (EEG) signal is a novel technology that provides a direct pathway between human brain and outside world. For a traditional subject-dependent BCI system, a calibration procedure is required to collect sufficient data to build a subject-specific adaptation model, which can be a huge challenge for stroke patients. In contrast, subject-independent BCI which can shorten or even eliminate the pre-calibration is more time-saving and meets the requirements of new users for quick access to the BCI. In this paper, we design a novel fusion neural network EEG classification framework that uses a specially designed generative adversarial network (GAN), called a filter bank GAN (FBGAN), to acquire high-quality EEG data for augmentation and a proposed discriminative feature network for motor imagery (MI) task recognition. Specifically, multiple sub-bands of MI EEG are first filtered using a filter bank approach, then sparse common spatial pattern (CSP) features are extracted from multiple bands of filtered EEG data, which constrains the GAN to maintain more spatial features of the EEG signal, and finally we design a convolutional recurrent network classification method with discriminative features (CRNN-DF) to recognize MI tasks based on the idea of feature enhancement. The hybrid neural network proposed in this study achieves an average classification accuracy of 72.74 ± 10.44% (mean ± std) in four-class tasks of BCI IV-2a, which is 4.77% higher than the state-of-the-art subject-independent classification method. A promising approach is provided to facilitate the practical application of BCI.
基于脑电图(EEG)信号的脑机接口(BCI)是一种为人类大脑与外部世界提供直接通路的新技术。对于传统的依赖个体的BCI系统,需要进行校准程序来收集足够的数据以建立个体特定的适应模型,这对中风患者来说可能是一个巨大的挑战。相比之下,能够缩短甚至消除预校准的独立个体BCI更节省时间,并且满足新用户快速接入BCI的需求。在本文中,我们设计了一种新颖的融合神经网络EEG分类框架,该框架使用一种专门设计的生成对抗网络(GAN),称为滤波器组GAN(FBGAN),来获取高质量的EEG数据以进行增强,并设计了一种用于运动想象(MI)任务识别的判别特征网络。具体而言,首先使用滤波器组方法对MI EEG的多个子带进行滤波,然后从滤波后的EEG数据的多个频段中提取稀疏公共空间模式(CSP)特征,这会约束GAN以保留EEG信号的更多空间特征,最后我们基于特征增强的思想设计了一种具有判别特征的卷积循环网络分类方法(CRNN-DF)来识别MI任务。本研究中提出的混合神经网络在BCI IV-2a的四类任务中实现了72.74 ± 10.44%(均值 ± 标准差)的平均分类准确率,比当前最先进的独立个体分类方法高4.77%。为促进BCI的实际应用提供了一种有前景的方法。