Lo Siou Geraldine, Akawung Alianu K, Solbak Nathan M, McDonald Kathryn L, Al Rajabi Ala, Whelan Heather K, Kirkpatrick Sharon I
Cancer Research & Analytics, Alberta Health Services, Richmond Road Diagnostic & Treatment Centre, 1820 Richmond Rd SW, Calgary, Alberta, T2T 5C7, Canada.
Health Sciences Department, College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE.
Nutr J. 2021 May 8;20(1):42. doi: 10.1186/s12937-021-00696-3.
All self-reported dietary intake data are characterized by measurement error, and validation studies indicate that the estimation of energy intake (EI) is particularly affected.
Using self-reported food frequency and physical activity data from Alberta's Tomorrow Project participants (n = 9847 men 16,241 women), we compared the revised-Goldberg and the predicted total energy expenditure methods in their ability to identify misreporters of EI. We also compared dietary patterns derived by k-means clustering under different scenarios where misreporters are included in the cluster analysis (Inclusion); excluded prior to completing the cluster analysis (ExBefore); excluded after completing the cluster analysis (ExAfter); and finally, excluded before the cluster analysis but added to the ExBefore cluster solution using the nearest neighbor method (InclusionNN).
The predicted total energy expenditure method identified a significantly higher proportion of participants as EI misreporters compared to the revised-Goldberg method (50% vs. 47%, p < 0.0001). k-means cluster analysis identified 3 dietary patterns: Healthy, Meats/Pizza and Sweets/Dairy. Among both men and women, participants assigned to dietary patterns changed substantially between ExBefore and ExAfter and also between the Inclusion and InclusionNN scenarios (Hubert and Arabie's adjusted Rand Index, Kappa and Cramer's V statistics < 0.8).
Different scenarios used to account for EI misreporters influenced cluster analysis and hence the composition of the dietary patterns. Continued efforts are needed to explore and validate methods and their ability to identify and mitigate the impact of EI misestimation in nutritional epidemiology.
所有自我报告的饮食摄入数据都存在测量误差,验证研究表明能量摄入(EI)的估计受到的影响尤为显著。
利用来自艾伯塔省明日项目参与者(9847名男性和16241名女性)的自我报告食物频率和身体活动数据,我们比较了修订后的戈德堡法和预测总能量消耗法识别EI误报者的能力。我们还比较了在不同情况下通过k均值聚类得出的饮食模式,这些情况包括在聚类分析中纳入误报者(纳入);在完成聚类分析之前排除(事前排除);在完成聚类分析之后排除(事后排除);最后,在聚类分析之前排除,但使用最近邻法将其添加到事前排除聚类解决方案中(纳入最近邻)。
与修订后的戈德堡法相比,预测总能量消耗法识别出的EI误报者比例显著更高(50%对47%,p<0.0001)。k均值聚类分析确定了3种饮食模式:健康型、肉类/披萨型和甜食/乳制品型。在男性和女性中,分配到不同饮食模式的参与者在事前排除和事后排除之间以及纳入和纳入最近邻情况之间都有很大变化(休伯特和阿拉比调整后的兰德指数、卡帕系数和克莱默V统计量<0.8)。
用于处理EI误报者的不同情况影响了聚类分析,进而影响了饮食模式的组成。需要继续努力探索和验证方法及其在营养流行病学中识别和减轻EI估计错误影响的能力。