Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China.
Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
Trends Biotechnol. 2022 Feb;40(2):149-165. doi: 10.1016/j.tibtech.2021.04.004. Epub 2021 May 5.
Acetyl CoA is an important precursor for various chemicals. We provide a metabolic engineering guideline for the production of acetyl-CoA and other end products from a bacterial chassis. Among 13 pathways that produce acetyl-CoA from glucose, 11 lose carbon in the process, and two do not. The first 11 use the Embden-Meyerhof-Parnas (EMP) pathway to produce redox cofactors and gain or lose ATP. The other two pathways function via phosphoketolase with net consumption of ATP, so they must therefore be combined with one of the 11 glycolytic pathways or auxiliary pathways. Optimization of these pathways can maximize the theoretical acetyl-CoA yield, thereby minimizing the overall cost of subsequent acetyl-CoA-derived molecules. Other strategies for generating hyper-producer strains are also addressed.
乙酰辅酶 A 是各种化学物质的重要前体。我们为利用细菌底盘从葡萄糖生产乙酰辅酶 A 和其他终产物提供了代谢工程指南。在 13 条从葡萄糖生产乙酰辅酶 A 的途径中,有 11 条途径在该过程中会损失碳,而有两条途径不会。前 11 条途径利用 EMP 途径产生氧化还原辅因子,并获得或失去 ATP。另外两条途径通过磷酸酮解酶起作用,净消耗 ATP,因此必须与 11 条糖酵解途径或辅助途径之一结合。对这些途径进行优化可以最大限度地提高理论乙酰辅酶 A 产量,从而使后续乙酰辅酶 A 衍生分子的总成本最小化。还讨论了生成超产菌株的其他策略。