Suppr超能文献

木质素二苯乙烯双加氧酶的结构与功能分析来自鞘氨醇单胞菌 SYK-6。

Structural and functional analysis of lignostilbene dioxygenases from Sphingobium sp. SYK-6.

机构信息

Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge Tennessee, USA.

Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100758. doi: 10.1016/j.jbc.2021.100758. Epub 2021 May 7.

Abstract

Lignostilbene-α,β-dioxygenases (LSDs) are iron-dependent oxygenases involved in the catabolism of lignin-derived stilbenes. Sphingobium sp. SYK-6 contains eight LSD homologs with undetermined physiological roles. To investigate which homologs are involved in the catabolism of dehydrodiconiferyl alcohol (DCA), derived from β-5 linked lignin subunits, we heterologously produced the enzymes and screened their activities in lysates. The seven soluble enzymes all cleaved lignostilbene, but only LSD2, LSD3, and LSD4 exhibited high specific activity for 3-(4-hydroxy-3-(4-hydroxy-3-methoxystyryl)-5-methoxyphenyl) acrylate (DCA-S) relative to lignostilbene. LSD4 catalyzed the cleavage of DCA-S to 5-formylferulate and vanillin and cleaved lignostilbene and DCA-S (∼10 M s) with tenfold greater specificity than pterostilbene and resveratrol. X-ray crystal structures of native LSD4 and the catalytically inactive cobalt-substituted Co-LSD4 at 1.45 Å resolution revealed the same fold, metal ion coordination, and edge-to-edge dimeric structure as observed in related enzymes. Key catalytic residues, Phe-59, Tyr-101, and Lys-134, were also conserved. Structures of Co-LSD4·vanillin, Co-LSD4·lignostilbene, and Co-LSD4·DCA-S complexes revealed that Ser-283 forms a hydrogen bond with the hydroxyl group of the ferulyl portion of DCA-S. This residue is conserved in LSD2 and LSD4 but is alanine in LSD3. Substitution of Ser-283 with Ala minimally affected the specificity of LSD4 for either lignostilbene or DCA-S. By contrast, substitution with phenylalanine, as occurs in LSD5 and LSD6, reduced the specificity of the enzyme for both substrates by an order of magnitude. This study expands our understanding of an LSD critical to DCA catabolism as well as the physiological roles of other LSDs and their determinants of substrate specificity.

摘要

木质素二苯乙烯-α,β-双加氧酶(LSDs)是一种铁依赖性加氧酶,参与木质素衍生的二苯乙烯的分解代谢。鞘氨醇单胞菌 SYK-6 含有八个 LSD 同源物,其生理作用尚未确定。为了研究哪些同源物参与了来自 β-5 连接木质素亚基的脱氢二肉桂醇(DCA)的分解代谢,我们异源表达了这些酶,并在裂解物中筛选了它们的活性。七种可溶性酶都能切割木质素二苯乙烯,但只有 LSD2、LSD3 和 LSD4 对 3-(4-羟基-3-(4-羟基-3-甲氧基二苯乙烯基)-5-甲氧基苯基)丙烯醛(DCA-S)相对于木质素二苯乙烯具有高比活性。LSD4 催化 DCA-S 裂解为 5-甲酰基阿魏酸和香草醛,并以比白藜芦醇和紫檀芪高十倍的特异性切割木质素二苯乙烯和 DCA-S(∼10 M s)。天然 LSD4 和无催化活性的钴取代 Co-LSD4 的 X 射线晶体结构分辨率为 1.45 Å,显示出与相关酶相同的折叠、金属离子配位和边缘到边缘二聚体结构。关键的催化残基 Phe-59、Tyr-101 和 Lys-134 也保守。Co-LSD4·香草醛、Co-LSD4·木质素二苯乙烯和 Co-LSD4·DCA-S 复合物的结构表明,Ser-283 与 DCA-S 的阿魏酰部分的羟基形成氢键。该残基在 LSD2 和 LSD4 中保守,但在 LSD3 中为丙氨酸。用丙氨酸取代 Ser-283 对 LSD4 对木质素二苯乙烯或 DCA-S 的特异性影响最小。相比之下,用苯丙氨酸取代,如 LSD5 和 LSD6 中发生的那样,会使酶对两种底物的特异性降低一个数量级。这项研究扩展了我们对 LSD 的理解,这种 LSD 对 DCA 分解代谢至关重要,也扩展了其他 LSD 及其底物特异性决定因素的生理作用的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/693d/8191317/ec367f84751e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验