Xu Zhangyang, Peng Bo, Kitata Reta Birhanu, Nicora Carrie D, Weitz Karl K, Pu Yunqiao, Shi Tujin, Cort John R, Ragauskas Arthur J, Yang Bin
Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, ashington State University Tri-Cities, Joint Appointment: Pacific Northwest National Laboratory, 2710 Crimson Way, Richland, WA, 99354, USA.
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
Biotechnol Biofuels Bioprod. 2022 Oct 31;15(1):117. doi: 10.1186/s13068-022-02214-x.
Bacterial lignin degradation is believed to be primarily achieved by a secreted enzyme system. Effects of such extracellular enzyme systems on lignin structural changes and degradation pathways are still not clearly understood, which remains as a bottleneck in the bacterial lignin bioconversion process.
This study investigated lignin degradation using an isolated secretome secreted by Pseudomonas putida KT2440 that grew on glucose as the only carbon source. Enzyme assays revealed that the secretome harbored oxidase and peroxidase/Mn-peroxidase capacity and reached the highest activity at 120 h of the fermentation time. The degradation rate of alkali lignin was found to be only 8.1% by oxidases, but increased to 14.5% with the activation of peroxidase/Mn-peroxidase. Gas chromatography-mass spectrometry (GC-MS) and two-dimensional H-C heteronuclear single-quantum coherence (HSQC) NMR analysis revealed that the oxidases exhibited strong C-C bond (β-β, β-5, and β-1) cleavage. The activation of peroxidases enhanced lignin degradation by stimulating C-O bond (β-O-4) cleavage, resulting in increased yields of aromatic monomers and dimers. Further mass spectrometry-based quantitative proteomics measurements comprehensively identified different groups of enzymes particularly oxidoreductases in P. putida secretome, including reductases, peroxidases, monooxygenases, dioxygenases, oxidases, and dehydrogenases, potentially contributed to the lignin degradation process.
Overall, we discovered that bacterial extracellular degradation of alkali lignin to vanillin, vanillic acid, and other lignin-derived aromatics involved a series of oxidative cleavage, catalyzed by active DyP-type peroxidase, multicopper oxidase, and other accessory enzymes. These results will guide further metabolic engineering design to improve the efficiency of lignin bioconversion.
细菌木质素降解被认为主要通过分泌的酶系统来实现。此类细胞外酶系统对木质素结构变化和降解途径的影响仍未完全清楚,这仍是细菌木质素生物转化过程中的一个瓶颈。
本研究利用恶臭假单胞菌KT2440在以葡萄糖作为唯一碳源的条件下生长所分泌的分离分泌组来研究木质素降解。酶活性测定表明,该分泌组具有氧化酶和过氧化物酶/锰过氧化物酶活性,并在发酵120小时时达到最高活性。发现氧化酶对碱木质素的降解率仅为8.1%,但随着过氧化物酶/锰过氧化物酶的激活,降解率提高到了14.5%。气相色谱-质谱联用(GC-MS)和二维氢-碳异核单量子相干(HSQC)核磁共振分析表明,氧化酶表现出强烈的碳-碳键(β-β、β-5和β-1)裂解。过氧化物酶的激活通过刺激碳-氧键(β-O-4)裂解增强了木质素降解,导致芳香族单体和二聚体的产量增加。基于质谱的定量蛋白质组学进一步测量全面鉴定了恶臭假单胞菌分泌组中不同组别的酶,特别是氧化还原酶,包括还原酶、过氧化物酶、单加氧酶、双加氧酶、氧化酶和脱氢酶,它们可能对木质素降解过程有贡献。
总体而言,我们发现细菌细胞外将碱木质素降解为香草醛、香草酸和其他木质素衍生的芳香族化合物涉及一系列氧化裂解反应,由活性DyP型过氧化物酶、多铜氧化酶和其他辅助酶催化。这些结果将指导进一步的代谢工程设计,以提高木质素生物转化的效率。