Suppr超能文献

迈向情感表达的多模态建模

Toward Multimodal Modeling of Emotional Expressiveness.

作者信息

Lin Victoria, Girard Jeffrey M, Sayette Michael A, Morency Louis-Philippe

机构信息

Carnegie Mellon University.

University of Pittsburgh.

出版信息

Proc ACM Int Conf Multimodal Interact. 2020 Oct;2020:548-557. doi: 10.1145/3382507.3418887.

Abstract

Emotional expressiveness captures the extent to which a person tends to outwardly display their emotions through behavior. Due to the close relationship between emotional expressiveness and behavioral health, as well as the crucial role that it plays in social interaction, the ability to automatically predict emotional expressiveness stands to spur advances in science, medicine, and industry. In this paper, we explore three related research questions. First, how well can emotional expressiveness be predicted from visual, linguistic, and multimodal behavioral signals? Second, how important is each behavioral modality to the prediction of emotional expressiveness? Third, which behavioral signals are reliably related to emotional expressiveness? To answer these questions, we add highly reliable transcripts and human ratings of perceived emotional expressiveness to an existing video database and use this data to train, validate, and test predictive models. Our best model shows promising predictive performance on this dataset ( = 0.65, = 0.45, = 0.74). Multimodal models tend to perform best overall, and models trained on the linguistic modality tend to outperform models trained on the visual modality. Finally, examination of our interpretable models' coefficients reveals a number of visual and linguistic behavioral signals-such as facial action unit intensity, overall word count, and use of words related to social processes-that reliably predict emotional expressiveness.

摘要

情绪表达能力反映了一个人倾向于通过行为向外展示其情绪的程度。由于情绪表达能力与行为健康之间存在密切关系,以及它在社交互动中所起的关键作用,自动预测情绪表达能力的能力有望推动科学、医学和工业领域的进步。在本文中,我们探讨了三个相关的研究问题。第一,从视觉、语言和多模态行为信号中预测情绪表达能力的效果如何?第二,每种行为模态对情绪表达能力预测的重要性如何?第三,哪些行为信号与情绪表达能力可靠相关?为了回答这些问题,我们将高度可靠的文字记录和对感知到的情绪表达能力的人类评分添加到现有的视频数据库中,并使用这些数据来训练、验证和测试预测模型。我们的最佳模型在这个数据集上显示出了有前景的预测性能( = 0.65, = 0.45, = 0.74)。多模态模型总体上往往表现最佳,并且基于语言模态训练的模型往往优于基于视觉模态训练的模型。最后,对我们可解释模型的系数进行检查,揭示了一些视觉和语言行为信号——如面部动作单元强度、总单词数以及与社会过程相关的词汇使用——这些信号能够可靠地预测情绪表达能力。

相似文献

1
Toward Multimodal Modeling of Emotional Expressiveness.迈向情感表达的多模态建模
Proc ACM Int Conf Multimodal Interact. 2020 Oct;2020:548-557. doi: 10.1145/3382507.3418887.

本文引用的文献

1
Thinking twice about sum scores.慎重考虑总和得分。
Behav Res Methods. 2020 Dec;52(6):2287-2305. doi: 10.3758/s13428-020-01398-0.
7
Sayette Group Formation Task (GFT) Spontaneous Facial Expression Database.赛耶特集团组建任务(GFT)自发面部表情数据库。
Proc Int Conf Autom Face Gesture Recognit. 2017 May-Jun;2017:581-588. doi: 10.1109/FG.2017.144. Epub 2017 Jun 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验