Suppr超能文献

基于机器学习的卒中风险预测:一项 50 万中国成年人的前瞻性队列研究。

Stroke risk prediction using machine learning: a prospective cohort study of 0.5 million Chinese adults.

机构信息

Clinical Trial Service Unit and Epidemiological Studies, Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Department of Engineering Science, University of Oxford, Oxford, UK.

出版信息

J Am Med Inform Assoc. 2021 Jul 30;28(8):1719-1727. doi: 10.1093/jamia/ocab068.

Abstract

OBJECTIVE

To compare Cox models, machine learning (ML), and ensemble models combining both approaches, for prediction of stroke risk in a prospective study of Chinese adults.

MATERIALS AND METHODS

We evaluated models for stroke risk at varying intervals of follow-up (<9 years, 0-3 years, 3-6 years, 6-9 years) in 503 842 adults without prior history of stroke recruited from 10 areas in China in 2004-2008. Inputs included sociodemographic factors, diet, medical history, physical activity, and physical measurements. We compared discrimination and calibration of Cox regression, logistic regression, support vector machines, random survival forests, gradient boosted trees (GBT), and multilayer perceptrons, benchmarking performance against the 2017 Framingham Stroke Risk Profile. We then developed an ensemble approach to identify individuals at high risk of stroke (>10% predicted 9-yr stroke risk) by selectively applying either a GBT or Cox model based on individual-level characteristics.

RESULTS

For 9-yr stroke risk prediction, GBT provided the best discrimination (AUROC: 0.833 in men, 0.836 in women) and calibration, with consistent results in each interval of follow-up. The ensemble approach yielded incrementally higher accuracy (men: 76%, women: 80%), specificity (men: 76%, women: 81%), and positive predictive value (men: 26%, women: 24%) compared to any of the single-model approaches.

DISCUSSION AND CONCLUSION

Among several approaches, an ensemble model combining both GBT and Cox models achieved the best performance for identifying individuals at high risk of stroke in a contemporary study of Chinese adults. The results highlight the potential value of expanding the use of ML in clinical practice.

摘要

目的

比较 Cox 模型、机器学习(ML)和结合两种方法的集成模型,以预测中国成年人前瞻性研究中的中风风险。

材料与方法

我们评估了 Cox 回归、逻辑回归、支持向量机、随机生存森林、梯度提升树(GBT)和多层感知机在随访时间不同(<9 年、0-3 年、3-6 年、6-9 年)的情况下预测中风风险的模型,纳入的输入因素包括社会人口统计学因素、饮食、病史、身体活动和身体测量。我们比较了 Cox 回归、逻辑回归、支持向量机、随机生存森林、梯度提升树(GBT)和多层感知机的判别和校准,以 2017 年弗雷明汉中风风险预测模型为基准。然后,我们通过基于个体特征有选择地应用 GBT 或 Cox 模型,开发了一种集成方法来识别中风风险较高(>10%预测 9 年中风风险)的个体。

结果

对于 9 年中风风险预测,GBT 提供了最佳的判别(男性 AUROC:0.833,女性 AUROC:0.836)和校准,在每个随访间隔都有一致的结果。与任何单一模型方法相比,集成方法的准确性(男性:76%,女性:80%)、特异性(男性:76%,女性:81%)和阳性预测值(男性:26%,女性:24%)都有递增性提高。

讨论与结论

在几种方法中,一种结合 GBT 和 Cox 模型的集成模型在对中国成年人进行的当代研究中,在识别中风风险较高的个体方面表现最佳。研究结果强调了在临床实践中扩大使用 ML 的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a65/8324240/5830fd72b635/ocab068f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验