Suppr超能文献

人工智能模型在心血管疾病风险预测中应用的时间事件结局的系统评价。

A Systematic Review of Artificial Intelligence Models for Time-to-Event Outcome Applied in Cardiovascular Disease Risk Prediction.

机构信息

School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.

Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

出版信息

J Med Syst. 2024 Jul 19;48(1):68. doi: 10.1007/s10916-024-02087-7.

Abstract

Artificial intelligence (AI) based predictive models for early detection of cardiovascular disease (CVD) risk are increasingly being utilised. However, AI based risk prediction models that account for right-censored data have been overlooked. This systematic review (PROSPERO protocol CRD42023492655) includes 33 studies that utilised machine learning (ML) and deep learning (DL) models for survival outcome in CVD prediction. We provided details on the employed ML and DL models, eXplainable AI (XAI) techniques, and type of included variables, with a focus on social determinants of health (SDoH) and gender-stratification. Approximately half of the studies were published in 2023 with the majority from the United States. Random Survival Forest (RSF), Survival Gradient Boosting models, and Penalised Cox models were the most frequently employed ML models. DeepSurv was the most frequently employed DL model. DL models were better at predicting CVD outcomes than ML models. Permutation-based feature importance and Shapley values were the most utilised XAI methods for explaining AI models. Moreover, only one in five studies performed gender-stratification analysis and very few incorporate the wide range of SDoH factors in their prediction model. In conclusion, the evidence indicates that RSF and DeepSurv models are currently the optimal models for predicting CVD outcomes. This study also highlights the better predictive ability of DL survival models, compared to ML models. Future research should ensure the appropriate interpretation of AI models, accounting for SDoH, and gender stratification, as gender plays a significant role in CVD occurrence.

摘要

人工智能(AI)预测模型在心血管疾病(CVD)风险的早期检测中得到了越来越多的应用。然而,针对右删失数据的 AI 风险预测模型却被忽视了。本系统评价(PROSPERO 方案 CRD42023492655)纳入了 33 项研究,这些研究使用机器学习(ML)和深度学习(DL)模型预测 CVD 中的生存结局。我们详细介绍了所使用的 ML 和 DL 模型、可解释人工智能(XAI)技术以及所包含变量的类型,重点关注健康的社会决定因素(SDoH)和性别分层。大约一半的研究发表于 2023 年,且大多数来自美国。随机生存森林(RSF)、生存梯度提升模型和惩罚 Cox 模型是最常使用的 ML 模型。DeepSurv 是最常使用的 DL 模型。DL 模型在预测 CVD 结局方面优于 ML 模型。基于排列的特征重要性和 Shapley 值是用于解释 AI 模型的最常用 XAI 方法。此外,只有五分之一的研究进行了性别分层分析,并且很少有研究将广泛的 SDoH 因素纳入其预测模型。总之,证据表明 RSF 和 DeepSurv 模型是目前预测 CVD 结局的最优模型。本研究还强调了 DL 生存模型与 ML 模型相比具有更好的预测能力。未来的研究应确保适当解释 AI 模型,考虑到 SDoH 和性别分层,因为性别在 CVD 发生中起着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/100c/11271333/1699c5f7b05d/10916_2024_2087_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验