Suppr超能文献

屏幕注视和医患计算机交互对话的自动分类:计算民族志算法的开发和验证。

Automatic Classification of Screen Gaze and Dialogue in Doctor-Patient-Computer Interactions: Computational Ethnography Algorithm Development and Validation.

机构信息

Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.

Academic Center for Computing and Media Studies, Kyoto University, Kyoto, Japan.

出版信息

J Med Internet Res. 2021 May 10;23(5):e25218. doi: 10.2196/25218.

Abstract

BACKGROUND

The study of doctor-patient-computer interactions is a key research area for examining doctor-patient relationships; however, studying these interactions is costly and obtrusive as researchers usually set up complex mechanisms or intrude on consultations to collect, then manually analyze the data.

OBJECTIVE

We aimed to facilitate human-computer and human-human interaction research in clinics by providing a computational ethnography tool: an unobtrusive automatic classifier of screen gaze and dialogue combinations in doctor-patient-computer interactions.

METHODS

The classifier's input is video taken by doctors using their computers' internal camera and microphone. By estimating the key points of the doctor's face and the presence of voice activity, we estimate the type of interaction that is taking place. The classification output of each video segment is 1 of 4 interaction classes: (1) screen gaze and dialogue, wherein the doctor is gazing at the computer screen while conversing with the patient; (2) dialogue, wherein the doctor is gazing away from the computer screen while conversing with the patient; (3) screen gaze, wherein the doctor is gazing at the computer screen without conversing with the patient; and (4) other, wherein no screen gaze or dialogue are detected. We evaluated the classifier using 30 minutes of video provided by 5 doctors simulating consultations in their clinics both in semi- and fully inclusive layouts.

RESULTS

The classifier achieved an overall accuracy of 0.83, a performance similar to that of a human coder. Similar to the human coder, the classifier was more accurate in fully inclusive layouts than in semi-inclusive layouts.

CONCLUSIONS

The proposed classifier can be used by researchers, care providers, designers, medical educators, and others who are interested in exploring and answering questions related to screen gaze and dialogue in doctor-patient-computer interactions.

摘要

背景

研究医患计算机交互是考察医患关系的一个关键研究领域;然而,研究这些交互作用既昂贵又具有侵入性,因为研究人员通常需要设置复杂的机制或干扰咨询以收集数据,然后手动分析数据。

目的

通过提供一种计算民族志工具,为临床中的人机和人际交互研究提供便利:一种在医患计算机交互中自动分类屏幕凝视和对话组合的不引人注目的分类器。

方法

分类器的输入是医生使用其计算机内部摄像头和麦克风拍摄的视频。通过估计医生面部的关键点和语音活动的存在,我们估计正在进行的交互类型。每个视频片段的分类输出为 4 种交互类型之一:(1)屏幕凝视和对话,即医生在与患者交谈时凝视计算机屏幕;(2)对话,即医生在与患者交谈时凝视远离计算机屏幕;(3)屏幕凝视,即医生在与患者交谈时凝视计算机屏幕;(4)其他,即未检测到屏幕凝视或对话。我们使用 5 位医生在其诊所中模拟咨询的 30 分钟视频来评估分类器,这些视频分别采用半包含和全包含布局。

结果

分类器的整体准确率为 0.83,与人工编码器的性能相似。与人工编码器类似,分类器在全包含布局中的准确性高于半包含布局。

结论

所提出的分类器可被研究人员、护理提供者、设计师、医学教育者和其他对探索和回答与医患计算机交互中的屏幕凝视和对话相关问题感兴趣的人使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d9e/8145082/879a8ca5d2e1/jmir_v23i5e25218_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验