Department of Genetic, Faculty of Basic Sciences, Bonab Branch, Islamic Azad University, Bonab, Iran.
Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Microvasc Res. 2021 Sep;137:104174. doi: 10.1016/j.mvr.2021.104174. Epub 2021 May 8.
This study aimed to explore the angiogenesis potential of human endothelial cells encapsulated inside alginate-gelatin microspheres under static and dynamic culture systems after 7 days. Human umbilical vein endothelial cells were encapsulated inside alginate (1%) and gelatin (1.2%) using an electrostatic encapsulation method. Cells were incubated for 7 days in vitro. The cell survival rate was measured using the MTT assay. The expression of VEGFR-2 and von Willebrand factor genes was studied by real-time PCR assay. Using western blot analysis, we monitored the protein contents of VEGFR-2, vWF, and Caspase 3. The levels of SOD and GPx enzymes were calculated using biochemical kits. Angiogenesis potential was assessed using in vitro Matrigel assay. Data showed an increased survival rate in encapsulated cells cultured under the static condition compared to the conventional 2D condition (p < 0.05). The culture of encapsulated cells under a dynamic bioreactor system did not alter cell viability. Compared to the dynamic culture system, the incubation of encapsulated cells in the static culture system swelled the microspheres (p < 0.05). Both dynamic and static culture models increased the expression of VEGFR-2 and von Willebrand factor in encapsulated cells compared to 2D culture (p < 0.05), showing enhanced functional maturation. Data showed a significant increase of vWF and reduction of apoptosis marker Caspase in the dynamic culture system (p < 0.05). The levels of SOD and GPx were significantly increased in dynamic and static culture models as compared to the control 2D group (p < 0.05). In vitro tubulogenesis assay showed significant induction of angiogenesis in dynamic encapsulated HUVECs indicated with a large number of vascular tubes and arborized ECs compared to the control and static encapsulated HUVECs (p < 0.05). The current study suggests a bioreactor dynamic system is a reliable approach, similar to a static condition, for the expansion of encapsulated human ECs in a 3D milieu.
本研究旨在探索人脐静脉内皮细胞(HUVEC)在静态和动态培养系统中 7 天后被包裹在藻酸盐-明胶微球中的血管生成潜力。采用静电包埋法将人脐静脉内皮细胞包裹在 1%的藻酸钠和 1.2%的明胶中。细胞在体外孵育 7 天。通过 MTT 检测细胞存活率。采用实时 PCR 检测血管内皮生长因子受体 2(VEGFR-2)和血管性血友病因子(vWF)基因的表达。通过 Western blot 分析监测 VEGFR-2、vWF 和 Caspase 3 的蛋白含量。采用生化试剂盒计算超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPx)的水平。采用体外 Matrigel 实验评估血管生成潜力。结果显示,与传统的 2D 培养条件相比,静态培养条件下包裹细胞的存活率增加(p<0.05)。在动态生物反应器系统中培养包裹细胞不会改变细胞活力。与动态培养系统相比,在静态培养系统中孵育包裹细胞会使微球膨胀(p<0.05)。与 2D 培养相比,动态和静态培养模型均增加了包裹细胞中 VEGFR-2 和 vWF 的表达(p<0.05),显示出增强的功能成熟度。结果显示,动态培养系统中 vWF 显著增加,凋亡标志物 Caspase 减少(p<0.05)。与对照组相比,动态和静态培养模型中 SOD 和 GPx 的水平均显著增加(p<0.05)。体外管状形成实验显示,与对照组和静态包裹 HUVEC 相比,动态包裹 HUVEC 可显著诱导血管生成,表现为大量血管管腔和分支的 EC(p<0.05)。本研究表明,与静态条件类似,生物反应器动态系统是一种可靠的方法,可用于在 3D 环境中扩增包裹的人 EC。