文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习可预测接受抗血管内皮生长因子治疗及延长治疗方案的新生血管性年龄相关性黄斑变性、糖尿病性黄斑水肿和视网膜静脉阻塞相关黄斑水肿患者的抗 VEGF 药物治疗需求。

Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema.

机构信息

AIMI, ARTORG Center, University of Bern, Bern, Switzerland.

Department for Ophthalmology, Inselspital, University Hospital, University of Bern, Bern, Switzerland.

出版信息

Ophthalmol Retina. 2021 Jul;5(7):604-624. doi: 10.1016/j.oret.2021.05.002. Epub 2021 May 8.


DOI:10.1016/j.oret.2021.05.002
PMID:33971352
Abstract

PURPOSE: To assess the potential of machine learning to predict low and high treatment demand in real life in patients with neovascular age-related macular degeneration (nAMD), retinal vein occlusion (RVO), and diabetic macular edema (DME) treated according to a treat-and-extend regimen (TER). DESIGN: Retrospective cohort study. PARTICIPANTS: Three hundred seventy-seven eyes (340 patients) with nAMD and 333 eyes (285 patients) with RVO or DME treated with anti-vascular endothelial growth factor agents (VEGF) according to a predefined TER from 2014 through 2018. METHODS: Eyes were grouped by disease into low, moderate, and high treatment demands, defined by the average treatment interval (low, ≥10 weeks; high, ≤5 weeks; moderate, remaining eyes). Two random forest models were trained to predict the probability of the long-term treatment demand of a new patient. Both models use morphological features automatically extracted from the OCT volumes at baseline and after 2 consecutive visits, as well as patient demographic information. Evaluation of the models included a 10-fold cross-validation ensuring that no patient was present in both the training set (nAMD, approximately 339; RVO and DME, approximately 300) and test set (nAMD, approximately 38; RVO and DME, approximately 33). MAIN OUTCOME MEASURES: Mean area under the receiver operating characteristic curve (AUC) of both models; contribution to the prediction and statistical significance of the input features. RESULTS: Based on the first 3 visits, it was possible to predict low and high treatment demand in nAMD eyes and in RVO and DME eyes with similar accuracy. The distribution of low, high, and moderate demanders was 127, 42, and 208, respectively, for nAMD and 61, 50, and 222, respectively, for RVO and DME. The nAMD-trained models yielded mean AUCs of 0.79 and 0.79 over the 10-fold crossovers for low and high demand, respectively. Models for RVO and DME showed similar results, with a mean AUC of 0.76 and 0.78 for low and high demand, respectively. Even more importantly, this study revealed that it is possible to predict low demand reasonably well at the first visit, before the first injection. CONCLUSIONS: Machine learning classifiers can predict treatment demand and may assist in establishing patient-specific treatment plans in the near future.

摘要

目的:评估机器学习在预测接受根据治疗和扩展方案(TER)治疗的新生血管性年龄相关性黄斑变性(nAMD)、视网膜静脉阻塞(RVO)和糖尿病性黄斑水肿(DME)患者的实际治疗需求方面的潜力。

设计:回顾性队列研究。

参与者:2014 年至 2018 年期间,377 只眼(340 名患者)患有 nAMD 和 333 只眼(285 名患者)患有 RVO 或 DME,这些患者均接受了抗血管内皮生长因子(VEGF)药物治疗。

方法:根据平均治疗间隔(低:≥10 周;高:≤5 周;中:其余眼)将眼分为低、中、高治疗需求组。为预测新患者的长期治疗需求,训练了两个随机森林模型。这两个模型均使用从基线和连续两次就诊的 OCT 体积中自动提取的形态学特征,以及患者的人口统计学信息。对模型的评估包括 10 折交叉验证,以确保没有患者同时存在于训练集(nAMD,约 339 只眼;RVO 和 DME,约 300 只眼)和测试集(nAMD,约 38 只眼;RVO 和 DME,约 33 只眼)中。

主要观察指标:两个模型的接收者操作特征曲线下平均面积(AUC);输入特征的预测贡献和统计学意义。

结果:根据前 3 次就诊情况,nAMD 眼和 RVO 和 DME 眼的低治疗需求和高治疗需求均可达到相似的预测准确性。nAMD 眼的低、高和中需求者的分布分别为 127、42 和 208,RVO 和 DME 眼的分布分别为 61、50 和 222。nAMD 训练的模型在 10 折交叉验证中对于低需求和高需求的平均 AUC 分别为 0.79 和 0.79。RVO 和 DME 的模型显示出相似的结果,低需求和高需求的平均 AUC 分别为 0.76 和 0.78。更重要的是,这项研究表明,在第一次就诊(即第一次注射之前),可以合理地预测低需求。

结论:机器学习分类器可以预测治疗需求,并可能在不久的将来有助于制定患者特异性治疗计划。

相似文献

[1]
Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema.

Ophthalmol Retina. 2021-7

[2]
Individualized treat-and-extend regime for optimization of real-world vision outcome and improved patients' persistence.

BMC Ophthalmol. 2020-3-30

[3]
Long-term dynamic changes and influencing factors of corneal morphology after multiple intravitreal injections of anti-VEGF drugs.

Medicine (Baltimore). 2024-4-26

[4]
Longer-Term Anti-VEGF Therapy Outcomes in Neovascular Age-Related Macular Degeneration, Diabetic Macular Edema, and Vein Occlusion-Related Macular Edema: Clinical Outcomes in 130 247 Eyes.

Ophthalmol Retina. 2022-9

[5]
SYSTEMIC PHARMACOKINETICS AND PHARMACODYNAMICS OF INTRAVITREAL AFLIBERCEPT, BEVACIZUMAB, AND RANIBIZUMAB.

Retina. 2017-10

[6]
Five-year visual acuity outcomes and injection patterns in patients with pro-re-nata treatments for AMD, DME, RVO and myopic CNV.

Br J Ophthalmol. 2017-3

[7]
Demographics of patients receiving Intravitreal anti-VEGF treatment in real-world practice: healthcare research data versus randomized controlled trials.

BMC Ophthalmol. 2017-1-19

[8]
Patient Experience Survey of Anti-Vascular Endothelial Growth Factor Treatment for Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema.

Ophthalmic Res. 2024

[9]
Changes in 12-month outcomes over time for age-related macular degeneration, diabetic macular oedema and retinal vein occlusion.

Eye (Lond). 2023-4

[10]
Relationship Between Visual Acuity and Retinal Thickness During Anti-Vascular Endothelial Growth Factor Therapy for Retinal Diseases.

Am J Ophthalmol. 2017-8

引用本文的文献

[1]
Pharmacoproteomics in the development of personalised medicine in Age-related Macular Degeneration (PHARPRO-AMD) study protocol.

BMJ Open Ophthalmol. 2025-8-24

[2]
Short and long-term impact of intravitreal anti-VEGF therapy interruption in retinal vein occlusion during the COVID-19 pandemic: functional outcomes and AI-based fluid analysis of macular edema.

Int J Retina Vitreous. 2025-8-5

[3]
A machine learning model for predicting anatomical response to Anti-VEGF therapy in diabetic macular edema.

Front Cell Dev Biol. 2025-5-30

[4]
Radiomics Analysis Based on Optical Coherence Tomography to Prognose the Efficacy of Anti-VEGF Therapy of Retinal Vein Occlusion-Related Macular Edema.

Invest Ophthalmol Vis Sci. 2025-4-1

[5]
Artificial intelligence for early detection of diabetes mellitus complications via retinal imaging.

J Diabetes Metab Disord. 2025-4-12

[6]
A post-hoc analysis of intravitreal aflibercept-treated nAMD patients from ARIES & ALTAIR: predicting treatment intervals and frequency for aflibercept treat-and-extend therapy regimen using machine learning.

Graefes Arch Clin Exp Ophthalmol. 2025-4-10

[7]
Evaluation of Convolutional Neural Networks (CNNs) in Identifying Retinal Conditions Through Classification of Optical Coherence Tomography (OCT) Images.

Cureus. 2025-1-7

[8]
Session-by-Session Prediction of Anti-Endothelial Growth Factor Injection Needs in Neovascular Age-Related Macular Degeneration Using Optical-Coherence-Tomography-Derived Features and Machine Learning.

Diagnostics (Basel). 2024-11-21

[9]
Anti-VEGF treatment outcome prediction based on optical coherence tomography images in neovascular age-related macular degeneration using a deep neural network.

Sci Rep. 2024-11-16

[10]
Baseline characteristics associated with the first year treatment interval of intravitreal faricimab in neovascular age-related macular degeneration (nAMD).

BMJ Open Ophthalmol. 2024-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索