AIMI, ARTORG Center, University of Bern, Bern, Switzerland.
Department for Ophthalmology, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
Ophthalmol Retina. 2021 Jul;5(7):604-624. doi: 10.1016/j.oret.2021.05.002. Epub 2021 May 8.
PURPOSE: To assess the potential of machine learning to predict low and high treatment demand in real life in patients with neovascular age-related macular degeneration (nAMD), retinal vein occlusion (RVO), and diabetic macular edema (DME) treated according to a treat-and-extend regimen (TER). DESIGN: Retrospective cohort study. PARTICIPANTS: Three hundred seventy-seven eyes (340 patients) with nAMD and 333 eyes (285 patients) with RVO or DME treated with anti-vascular endothelial growth factor agents (VEGF) according to a predefined TER from 2014 through 2018. METHODS: Eyes were grouped by disease into low, moderate, and high treatment demands, defined by the average treatment interval (low, ≥10 weeks; high, ≤5 weeks; moderate, remaining eyes). Two random forest models were trained to predict the probability of the long-term treatment demand of a new patient. Both models use morphological features automatically extracted from the OCT volumes at baseline and after 2 consecutive visits, as well as patient demographic information. Evaluation of the models included a 10-fold cross-validation ensuring that no patient was present in both the training set (nAMD, approximately 339; RVO and DME, approximately 300) and test set (nAMD, approximately 38; RVO and DME, approximately 33). MAIN OUTCOME MEASURES: Mean area under the receiver operating characteristic curve (AUC) of both models; contribution to the prediction and statistical significance of the input features. RESULTS: Based on the first 3 visits, it was possible to predict low and high treatment demand in nAMD eyes and in RVO and DME eyes with similar accuracy. The distribution of low, high, and moderate demanders was 127, 42, and 208, respectively, for nAMD and 61, 50, and 222, respectively, for RVO and DME. The nAMD-trained models yielded mean AUCs of 0.79 and 0.79 over the 10-fold crossovers for low and high demand, respectively. Models for RVO and DME showed similar results, with a mean AUC of 0.76 and 0.78 for low and high demand, respectively. Even more importantly, this study revealed that it is possible to predict low demand reasonably well at the first visit, before the first injection. CONCLUSIONS: Machine learning classifiers can predict treatment demand and may assist in establishing patient-specific treatment plans in the near future.
目的:评估机器学习在预测接受根据治疗和扩展方案(TER)治疗的新生血管性年龄相关性黄斑变性(nAMD)、视网膜静脉阻塞(RVO)和糖尿病性黄斑水肿(DME)患者的实际治疗需求方面的潜力。
设计:回顾性队列研究。
参与者:2014 年至 2018 年期间,377 只眼(340 名患者)患有 nAMD 和 333 只眼(285 名患者)患有 RVO 或 DME,这些患者均接受了抗血管内皮生长因子(VEGF)药物治疗。
方法:根据平均治疗间隔(低:≥10 周;高:≤5 周;中:其余眼)将眼分为低、中、高治疗需求组。为预测新患者的长期治疗需求,训练了两个随机森林模型。这两个模型均使用从基线和连续两次就诊的 OCT 体积中自动提取的形态学特征,以及患者的人口统计学信息。对模型的评估包括 10 折交叉验证,以确保没有患者同时存在于训练集(nAMD,约 339 只眼;RVO 和 DME,约 300 只眼)和测试集(nAMD,约 38 只眼;RVO 和 DME,约 33 只眼)中。
主要观察指标:两个模型的接收者操作特征曲线下平均面积(AUC);输入特征的预测贡献和统计学意义。
结果:根据前 3 次就诊情况,nAMD 眼和 RVO 和 DME 眼的低治疗需求和高治疗需求均可达到相似的预测准确性。nAMD 眼的低、高和中需求者的分布分别为 127、42 和 208,RVO 和 DME 眼的分布分别为 61、50 和 222。nAMD 训练的模型在 10 折交叉验证中对于低需求和高需求的平均 AUC 分别为 0.79 和 0.79。RVO 和 DME 的模型显示出相似的结果,低需求和高需求的平均 AUC 分别为 0.76 和 0.78。更重要的是,这项研究表明,在第一次就诊(即第一次注射之前),可以合理地预测低需求。
结论:机器学习分类器可以预测治疗需求,并可能在不久的将来有助于制定患者特异性治疗计划。
Front Cell Dev Biol. 2025-5-30
J Diabetes Metab Disord. 2025-4-12