Teegavarapu Rohin R, Sanghvi Harshal A, Belani Triya, Gill Gurnoor S, Chalam K V, Gupta Shailesh
Department of Science, American Heritage High School, Delray Beach, USA.
Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.
Cureus. 2025 Jan 7;17(1):e77109. doi: 10.7759/cureus.77109. eCollection 2025 Jan.
Introduction Diabetic retinopathy (DR) is a leading cause of blindness globally, emphasizing the urgent need for efficient diagnostic tools. Machine learning, particularly convolutional neural networks (CNNs), has shown promise in automating the diagnosis of retinal conditions with high accuracy. This study evaluates two CNN models, VGG16 and InceptionV3, for classifying retinal optical coherence tomography (OCT) images into four categories: normal, choroidal neovascularization, diabetic macular edema (DME), and drusen. Methods Using 83,000 OCT images across four categories, the CNNs were trained and tested via Python-based libraries, including TensorFlow and Keras. Metrics such as accuracy, sensitivity, and specificity were analyzed with confusion matrices and performance graphs. Comparisons of dataset sizes evaluated the impact on model accuracy with tools deployed on JupyterLab. Results VGG16 and InceptionV3 achieved accuracy between 85% and 95%, with VGG16 peaking at 94% and outperforming InceptionV3 (92%). Larger datasets improved sensitivity by 7% and accuracy across all categories, with the highest performance for normal and drusen classifications. Metrics like sensitivity and specificity positively correlated with dataset size. Conclusions The study confirms CNNs' potential in retinal diagnostics, achieving high classification accuracy. Limitations included reliance on grayscale images and computational intensity, which hindered finer distinctions. Future work should integrate data augmentation, patient-specific variables, and lightweight architectures to optimize performance for clinical use, reducing costs and improving outcomes.
引言
糖尿病视网膜病变(DR)是全球失明的主要原因,这凸显了对高效诊断工具的迫切需求。机器学习,特别是卷积神经网络(CNN),已显示出在高精度自动诊断视网膜疾病方面的潜力。本研究评估了两种CNN模型,即VGG16和InceptionV3,用于将视网膜光学相干断层扫描(OCT)图像分为四类:正常、脉络膜新生血管、糖尿病性黄斑水肿(DME)和玻璃膜疣。
方法
使用四类共83,000张OCT图像,通过基于Python的库(包括TensorFlow和Keras)对CNN进行训练和测试。使用混淆矩阵和性能图分析诸如准确率、灵敏度和特异性等指标。通过在JupyterLab上部署的工具对数据集大小进行比较,评估其对模型准确率的影响。
结果
VGG16和InceptionV3的准确率在85%至95%之间,VGG16最高达到94%,优于InceptionV3(92%)。更大的数据集使所有类别的灵敏度提高了7%,准确率也有所提高,正常和玻璃膜疣分类的性能最高。灵敏度和特异性等指标与数据集大小呈正相关。
结论
该研究证实了CNN在视网膜诊断中的潜力,实现了较高的分类准确率。局限性包括依赖灰度图像和计算强度大,这阻碍了更精细的区分。未来的工作应整合数据增强、患者特定变量和轻量级架构,以优化临床应用的性能,降低成本并改善治疗效果。