Trauma Center of West China Hospital/West China School of Nursing, Sichuan University, Guo Xue Road 37#, Chengdu, 610041, China.
College of Chemical Engineering, Sichuan University, Chengdu, China.
BMC Emerg Med. 2021 May 10;21(1):60. doi: 10.1186/s12873-021-00447-x.
Venous thromboembolism (VTE) is a common complication of hospitalized trauma patients and has an adverse impact on patient outcomes. However, there is still a lack of appropriate tools for effectively predicting VTE for trauma patients. We try to verify the accuracy of the Caprini score for predicting VTE in trauma patients, and further improve the prediction through machine learning algorithms.
We retrospectively reviewed emergency trauma patients who were admitted to a trauma center in a tertiary hospital from September 2019 to March 2020. The data in the patient's electronic health record (EHR) and the Caprini score were extracted, combined with multiple feature screening methods and the random forest (RF) algorithm to constructs the VTE prediction model, and compares the prediction performance of (1) using only Caprini score; (2) using EHR data to build a machine learning model; (3) using EHR data and Caprini score to build a machine learning model. True Positive Rate (TPR), False Positive Rate (FPR), Area Under Curve (AUC), accuracy, and precision were reported.
The Caprini score shows a good VTE prediction effect on the trauma hospitalized population when the cut-off point is 11 (TPR = 0.667, FPR = 0.227, AUC = 0.773), The best prediction model is LASSO+RF model combined with Caprini Score and other five features extracted from EHR data (TPR = 0.757, FPR = 0.290, AUC = 0.799).
The Caprini score has good VTE prediction performance in trauma patients, and the use of machine learning methods can further improve the prediction performance.
静脉血栓栓塞症(VTE)是住院创伤患者的常见并发症,对患者的预后有不良影响。然而,对于创伤患者,仍然缺乏有效的 VTE 预测工具。我们试图验证 Caprini 评分预测创伤患者 VTE 的准确性,并通过机器学习算法进一步提高预测能力。
我们回顾性分析了 2019 年 9 月至 2020 年 3 月期间在一家三级医院的创伤中心住院的创伤患者。从患者的电子健康记录(EHR)中提取数据和 Caprini 评分,结合多种特征筛选方法和随机森林(RF)算法构建 VTE 预测模型,并比较了以下三种模型的预测性能:(1)仅使用 Caprini 评分;(2)使用 EHR 数据构建机器学习模型;(3)使用 EHR 数据和 Caprini 评分构建机器学习模型。报告真阳性率(TPR)、假阳性率(FPR)、曲线下面积(AUC)、准确性和精密度。
Caprini 评分在截断值为 11 时对创伤住院人群的 VTE 预测效果较好(TPR=0.667,FPR=0.227,AUC=0.773),最佳预测模型是 LASSO+RF 模型,该模型结合了 Caprini 评分和从 EHR 数据中提取的其他五个特征(TPR=0.757,FPR=0.290,AUC=0.799)。
Caprini 评分对创伤患者的 VTE 预测具有良好的性能,使用机器学习方法可以进一步提高预测性能。