文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TGF-β1 处理后的 DPSCs 通过 VEGF-Ang-Tie2 信号通路调节三维共培养的 HUVECs 和 DPSCs 的血管生成发芽。

DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling.

机构信息

Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.

Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.

出版信息

Stem Cell Res Ther. 2021 May 10;12(1):281. doi: 10.1186/s13287-021-02349-y.


DOI:10.1186/s13287-021-02349-y
PMID:33971955
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8112067/
Abstract

BACKGROUND: Maintaining the stability and maturation of blood vessels is of paramount importance for the vessels to carry out their physiological function. Smooth muscle cells (SMCs), pericytes, and mesenchymal stem cells (MSCs) are involved in the maturation process of the newly formed vessels. The aim of this study was to investigate whether transforming growth factor beta 1 (TGF-β1) treatment could enhance pericyte-like properties of dental pulp stem cells (DPSCs) and how TGF-β1-treated DPSCs for 7 days (T-DPSCs) stabilize the newly formed blood vessels. METHODS: We utilized TGF-β1 to treat DPSCs for 1, 3, 5, and 7 days. Western blotting and immunofluorescence were used to analyze the expression of SMC markers. Functional contraction assay was conducted to assess the contractility of T-DPSCs. The effects of T-DPSC-conditioned media (T-DPSC-CM) on human umbilical vein endothelial cell (HUVEC) proliferation and migration were examined by MTT, wound healing, and trans-well migration assay. Most importantly, in vitro 3D co-culture spheroidal sprouting assay was used to investigate the regulating role of vascular endothelial growth factor (VEGF)-angiopoietin (Ang)-Tie2 signaling on angiogenic sprouting in 3D co-cultured spheroids of HUVECs and T-DPSCs. Angiopoietin 2 (Ang2) and VEGF were used to treat the co-cultured spheroids to explore their roles in angiogenic sprouting. Inhibitors for Tie2 and VEGFR2 were used to block Ang1/Tie2 and VFGF/VEGFR2 signaling. RESULTS: Western blotting and immunofluorescence showed that the expression of SMC-specific markers (α-SMA and SM22α) were significantly increased after treatment with TGF-β1. Contractility of T-DPSCs was greater compared with that of DPSCs. T-DPSC-CM inhibited HUVEC migration. In vitro sprouting assay demonstrated that T-DPSCs enclosed HUVECs, resembling pericyte-like cells. Compared to co-culture with DPSCs, a smaller number of HUVEC sprouting was observed when co-cultured with T-DPSCs. VEGF and Ang2 co-stimulation significantly enhanced sprouting in HUVEC and T-DPSC co-culture spheroids, whereas VEGF or Ang2 alone exerted insignificant effects on HUVEC sprouting. Blocking Tie2 signaling reversed the sprouting inhibition by T-DPSCs, while blocking VEGF receptor (VEGFR) signaling boosted the sprouting inhibition by T-DPSCs. CONCLUSIONS: This study revealed that TGF-β1 can induce DPSC differentiation into functional pericyte-like cells. T-DPSCs maintain vessel stability through Ang1/Tie2 and VEGF/VEGFR2 signaling.

摘要

背景:维持血管的稳定性和成熟度对于血管发挥其生理功能至关重要。平滑肌细胞(SMCs)、周细胞和间充质干细胞(MSCs)参与了新形成血管的成熟过程。本研究旨在探讨转化生长因子β 1(TGF-β1)处理是否能增强牙髓干细胞(DPSCs)的周细胞样特性,以及经过 7 天 TGF-β1 处理的 DPSCs(T-DPSCs)如何稳定新形成的血管。

方法:我们利用 TGF-β1 处理 DPSCs 1、3、5 和 7 天。采用 Western blot 和免疫荧光法分析 SMC 标志物的表达。通过功能收缩试验评估 T-DPSCs 的收缩性。通过 MTT、划痕愈合和 Transwell 迁移试验检测 T-DPSC 条件培养基(T-DPSC-CM)对人脐静脉内皮细胞(HUVEC)增殖和迁移的影响。最重要的是,我们使用体外 3D 共培养球体发芽试验来研究血管内皮生长因子(VEGF)-血管生成素(Ang)-Tie2 信号对 HUVEC 和 T-DPSC 共培养球体中血管生成发芽的调节作用。使用 Ang 血管生成素 2(Ang2)和 VEGF 处理共培养球体,以探讨它们在血管生成发芽中的作用。使用 Tie2 和 VEGFR2 的抑制剂阻断 Ang1/Tie2 和 VEGF/VEGFR2 信号。

结果:Western blot 和免疫荧光结果表明,TGF-β1 处理后 SMC 特异性标志物(α-SMA 和 SM22α)的表达明显增加。T-DPSCs 的收缩性大于 DPSCs。T-DPSC-CM 抑制 HUVEC 迁移。体外发芽试验表明,T-DPSCs 包围 HUVECs,类似于周细胞样细胞。与与 DPSCs 共培养相比,与 T-DPSCs 共培养时观察到 HUVEC 发芽的数量较少。VEGF 和 Ang2 共同刺激显著增强了 HUVEC 和 T-DPSC 共培养球体的发芽,而 VEGF 或 Ang2 单独对 HUVEC 的发芽没有显著影响。阻断 Tie2 信号逆转了 T-DPSCs 对发芽的抑制作用,而阻断 VEGFR 信号则增强了 T-DPSCs 对发芽的抑制作用。

结论:本研究表明,TGF-β1 可诱导 DPSC 分化为功能性周细胞样细胞。T-DPSCs 通过 Ang1/Tie2 和 VEGF/VEGFR2 信号维持血管稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/5b66936cd17f/13287_2021_2349_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/fe8d3aad9030/13287_2021_2349_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/267ba5cdc53c/13287_2021_2349_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/912eb07ab5f8/13287_2021_2349_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/8ba73d28300e/13287_2021_2349_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/17e881618e35/13287_2021_2349_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/bcbddc582ed1/13287_2021_2349_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/bffb7d2b35a9/13287_2021_2349_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/5cef50cb3e63/13287_2021_2349_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/5b66936cd17f/13287_2021_2349_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/fe8d3aad9030/13287_2021_2349_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/267ba5cdc53c/13287_2021_2349_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/912eb07ab5f8/13287_2021_2349_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/8ba73d28300e/13287_2021_2349_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/17e881618e35/13287_2021_2349_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/bcbddc582ed1/13287_2021_2349_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/bffb7d2b35a9/13287_2021_2349_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/5cef50cb3e63/13287_2021_2349_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6ee/8112067/5b66936cd17f/13287_2021_2349_Fig9_HTML.jpg

相似文献

[1]
DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling.

Stem Cell Res Ther. 2021-5-10

[2]
Ang1/Tie2/VE-Cadherin Signaling Regulates DPSCs in Vascular Maturation.

J Dent Res. 2024-1

[3]
Direct contact with endothelial cells drives dental pulp stem cells toward smooth muscle cells differentiation via TGF-β1 secretion.

Int Endod J. 2023-9

[4]
VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells.

J Dent Res. 2013-4-22

[5]
Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization.

Circ Res. 1998-8-10

[6]
Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation.

Circ Res. 2001-1-19

[7]
TGF-β1-induced differentiation of SHED into functional smooth muscle cells.

Stem Cell Res Ther. 2017-1-23

[8]
Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2.

Cardiovasc Res. 2001-2-16

[9]
IL-35 Inhibits Angiogenesis through VEGF/Ang2/Tie2 Pathway in Rheumatoid Arthritis.

Cell Physiol Biochem. 2016

[10]
EphrinB2/EphB4 Signaling Regulates DPSCs to Induce Sprouting Angiogenesis of Endothelial Cells.

J Dent Res. 2019-4-24

引用本文的文献

[1]
Tissue Repair Mechanisms of Dental Pulp Stem Cells: A Comprehensive Review from Cutaneous Regeneration to Mucosal Healing.

Curr Issues Mol Biol. 2025-7-2

[2]
ATP1A1-Driven Intercellular Contact Between Dental Pulp Stem Cell and Endothelial Cell Enhances Vasculogenic Activity.

Int Dent J. 2025-7-7

[3]
An analysis of the therapeutic efficacy and underlying mechanisms of combining lycopene with dental pulp stem cells to ameliorate alzheimer's disease in rats.

Metab Brain Dis. 2025-6-24

[4]
Recombinant chromosome 6 open reading frame 120 protein promotes angiogenesis and endothelial‑to‑mesenchymal transition in human umbilical vein endothelial cells via the PI3K/Akt signaling pathway.

Mol Med Rep. 2025-9

[5]
VPA Enhances Pulp Regeneration by Regulating LPS-Induced Human Dental Pulp Stem Cells Odontogenic Differentiation.

Int Dent J. 2025-6-9

[6]
3D-printed microfibers encapsulating stem cells in scaffold with tri-culture and two-stage metformin release for bone/vasculature/nerve regeneration in rats.

Bioact Mater. 2025-5-21

[7]
Revolutionary Regeneration Therapy Utilizing Dental Stem Cells and State-of-the-Art Nanotechnology Devices to Heal Injured Teeth and Tissues.

Avicenna J Med Biotechnol. 2025

[8]
Recent advances in therapeutic use of transforming growth factor-beta inhibitors in cancer and fibrosis.

Front Oncol. 2025-4-25

[9]
Changes in Serum PDGF-C and TGF-β1 Levels After PCI in Premature Coronary Artery Disease: Combined Predictive Value for MACCE.

Int J Gen Med. 2025-4-30

[10]
Automated High-Throughput Live Cell Monitoring of Scratch Wound Closure.

Biomed Eng Comput Biol. 2024-11-27

本文引用的文献

[1]
Immunomodulation and Regeneration Properties of Dental Pulp Stem Cells: A Potential Therapy to Treat Coronavirus Disease 2019.

Cell Transplant. 2020

[2]
SHED promote angiogenesis in stem cell-mediated dental pulp regeneration.

Biochem Biophys Res Commun. 2020-9-3

[3]
Endothelial-Initiated Crosstalk Regulates Dental Pulp Stem Cell Self-Renewal.

J Dent Res. 2020-8

[4]
Spatial localization of endothelial cells in heterotypic spheroids influences Notch signaling.

J Mol Med (Berl). 2020-3

[5]
Three-dimensional Angiogenesis Assay System using Co-culture Spheroids Formed by Endothelial Colony Forming Cells and Mesenchymal Stem Cells.

J Vis Exp. 2019-9-18

[6]
Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke.

Front Neurol. 2019-8-2

[7]
EphrinB2/EphB4 Signaling Regulates DPSCs to Induce Sprouting Angiogenesis of Endothelial Cells.

J Dent Res. 2019-4-24

[8]
Tumor cells and their crosstalk with endothelial cells in 3D spheroids.

Sci Rep. 2017-9-5

[9]
Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions.

J Endod. 2017-8-3

[10]
Pericyte-expressed Tie2 controls angiogenesis and vessel maturation.

Nat Commun. 2017-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索