Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo 05503-900, Brazil.
Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2015159118.
Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of , a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.
毒液是蛇类的一项关键适应性创新,非毒液基因是如何被共同选择成为毒素武器库的一部分,这是一个重要的进化问题。虽然这个过程已经通过毒素序列的系统发育重建进行了研究,但毒素基因的基因组背景提供的证据仍然较少被探索。为了研究毒素招募的过程,我们对一种具有临床相关性的坑蝮蛇进行了基因组测序。除了产生具有编码 12 种毒素家族的典型结构的基因图谱外,我们还推断了它们基因座的大多数祖先基因。我们发现了以下证据:1)蛇毒金属蛋白酶(SVMPs)和磷脂酶 A(PLA2)在基因组上与它们的非毒性祖先相邻的位置上扩张;2)丝氨酸蛋白酶通过共同选择一个也产生蜥蜴 gilatoxins 的局部基因而产生,然后扩张;3)缓激肽增强肽起源于 C 型利钠肽基因骨架;4)VEGF-F 是从 PGF 样基因而不是 VEGF-A 中共同选择的。我们评估了两种非毒素基因原始招募到蛇毒中的情况:1)在基因座祖先基因重复中,2)在基因座祖先基因直接共同选择中。第一种情况解释了两种重要毒素(SVMP 和 PLA2)的起源,而第二种情况解释了更多毒液成分的出现。总的来说,我们的结果支持了一个局部组装的毒液武器库的观点,在这个武器库中,最具临床相关性的毒素家族通过后天基因重复扩张,无论它们是通过重复还是基因共同选择产生的。