Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
Nat Commun. 2021 May 10;12(1):2580. doi: 10.1038/s41467-021-22648-5.
Combining genetic and cell-type-specific proteomic datasets can generate biological insights and therapeutic hypotheses, but a technical and statistical framework for such analyses is lacking. Here, we present an open-source computational tool called Genoppi (lagelab.org/genoppi) that enables robust, standardized, and intuitive integration of quantitative proteomic results with genetic data. We use Genoppi to analyze 16 cell-type-specific protein interaction datasets of four proteins (BCL2, TDP-43, MDM2, PTEN) involved in cancer and neurological disease. Through systematic quality control of the data and integration with published protein interactions, we show a general pattern of both cell-type-independent and cell-type-specific interactions across three cancer cell types and one human iPSC-derived neuronal cell type. Furthermore, through the integration of proteomic and genetic datasets in Genoppi, our results suggest that the neuron-specific interactions of these proteins are mediating their genetic involvement in neurodegenerative diseases. Importantly, our analyses suggest that human iPSC-derived neurons are a relevant model system for studying the involvement of BCL2 and TDP-43 in amyotrophic lateral sclerosis.
将遗传和细胞类型特异性蛋白质组数据集相结合可以产生生物学见解和治疗假说,但缺乏用于此类分析的技术和统计框架。在这里,我们介绍了一个名为 Genoppi 的开源计算工具(lagelab.org/genoppi),它可以实现定量蛋白质组学结果与遗传数据的强大、标准化和直观集成。我们使用 Genoppi 分析了涉及癌症和神经疾病的四种蛋白质(BCL2、TDP-43、MDM2、PTEN)的 16 个细胞类型特异性蛋白质相互作用数据集。通过对数据进行系统的质量控制并与已发表的蛋白质相互作用进行整合,我们在三种癌细胞系和一种人类 iPSC 衍生的神经元细胞系中显示了普遍存在的细胞类型独立和细胞类型特异性相互作用模式。此外,通过在 Genoppi 中整合蛋白质组学和遗传数据集,我们的结果表明这些蛋白质的神经元特异性相互作用介导了它们在神经退行性疾病中的遗传参与。重要的是,我们的分析表明,人类 iPSC 衍生的神经元是研究 BCL2 和 TDP-43 在肌萎缩侧索硬化症中的参与的相关模型系统。