Suppr超能文献

肌肉 MRI 的纹理分析:基于机器学习的特发性炎性肌病分类。

Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies.

机构信息

Department of Radiology, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan.

Department of Rheumatology and Applied Immunology, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan.

出版信息

Sci Rep. 2021 May 10;11(1):9821. doi: 10.1038/s41598-021-89311-3.

Abstract

To develop a machine learning (ML) model that predicts disease groups or autoantibodies in patients with idiopathic inflammatory myopathies (IIMs) using muscle MRI radiomics features. Twenty-two patients with dermatomyositis (DM), 14 with amyopathic dermatomyositis (ADM), 19 with polymyositis (PM) and 19 with non-IIM were enrolled. Using 2D manual segmentation, 93 original features as well as 93 local binary pattern (LBP) features were extracted from MRI (short-tau inversion recovery [STIR] imaging) of proximal limb muscles. To construct and compare ML models that predict disease groups using each set of features, dimensional reductions were performed using a reproducibility analysis by inter-reader and intra-reader correlation coefficients, collinearity analysis, and the sequential feature selection (SFS) algorithm. Models were created using the linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machine (SVM), k-nearest neighbors (k-NN), random forest (RF) and multi-layer perceptron (MLP) classifiers, and validated using tenfold cross-validation repeated 100 times. We also investigated whether it was possible to construct models predicting autoantibody status. Our ML-based MRI radiomics models showed the potential to distinguish between PM, DM, and ADM. Models using LBP features provided better results, with macro-average AUC values of 0.767 and 0.714, accuracy of 61.2 and 61.4%, and macro-average recall of 61.9 and 59.8%, in the LDA and k-NN classifiers, respectively. In contrast, the accuracies of radiomics models distinguishing between non-IIM and IIM disease groups were low. A subgroup analysis showed that classification models for anti-Jo-1 and anti-ARS antibodies provided AUC values of 0.646-0.853 and 0.692-0.792, with accuracy of 71.5-81.0 and 65.8-78.3%, respectively. ML-based TA of muscle MRI may be used to predict disease groups or the autoantibody status in patients with IIM and is useful in non-invasive assessments of disease mechanisms.

摘要

利用肌肉 MRI 放射组学特征,开发一种机器学习(ML)模型,以预测特发性炎性肌病(IIM)患者的疾病组或自身抗体。共纳入 22 例皮肌炎(DM)患者、14 例无肌病性皮肌炎(ADM)患者、19 例多发性肌炎(PM)患者和 19 例非 IIM 患者。使用 2D 手动分割,从近端肢体肌肉的 MRI(短 tau 反转恢复 [STIR] 成像)中提取了 93 个原始特征和 93 个局部二值模式(LBP)特征。为了构建和比较使用每组特征预测疾病组的 ML 模型,通过读者间和读者内相关性系数、共线性分析和顺序特征选择(SFS)算法进行了降维。使用线性判别分析(LDA)、二次判别分析(QDA)、支持向量机(SVM)、k-最近邻(k-NN)、随机森林(RF)和多层感知器(MLP)分类器创建模型,并使用 10 倍交叉验证重复 100 次进行验证。我们还研究了是否可以构建预测自身抗体状态的模型。我们基于 ML 的 MRI 放射组学模型显示出区分 PM、DM 和 ADM 的潜力。使用 LBP 特征的模型提供了更好的结果,LDA 和 k-NN 分类器的宏观平均 AUC 值分别为 0.767 和 0.714,准确性分别为 61.2%和 61.4%,宏观平均召回率分别为 61.9%和 59.8%。相比之下,区分非 IIM 和 IIM 疾病组的放射组学模型的准确性较低。亚组分析表明,针对抗 Jo-1 和抗 ARS 抗体的分类模型的 AUC 值为 0.646-0.853 和 0.692-0.792,准确性分别为 71.5%-81.0%和 65.8%-78.3%。基于 ML 的肌肉 MRI TA 可用于预测 IIM 患者的疾病组或自身抗体状态,并且在疾病机制的非侵入性评估中很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c5/8110584/5b3c8bcfc5be/41598_2021_89311_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验