Suppr超能文献

从数据到诊断:机器学习如何彻底改变特发性炎性肌病的生物标志物发现。

From data to diagnosis: how machine learning is revolutionizing biomarker discovery in idiopathic inflammatory myopathies.

机构信息

Murdoch University, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, Western Australia (WA), Australia.

Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.

出版信息

Brief Bioinform. 2023 Nov 22;25(1). doi: 10.1093/bib/bbad514.

Abstract

Idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of muscle disorders including adult and juvenile dermatomyositis, polymyositis, immune-mediated necrotising myopathy and sporadic inclusion body myositis, all of which present with variable symptoms and disease progression. The identification of effective biomarkers for IIMs has been challenging due to the heterogeneity between IIMs and within IIM subgroups, but recent advances in machine learning (ML) techniques have shown promises in identifying novel biomarkers. This paper reviews recent studies on potential biomarkers for IIM and evaluates their clinical utility. We also explore how data analytic tools and ML algorithms have been used to identify biomarkers, highlighting their potential to advance our understanding and diagnosis of IIM and improve patient outcomes. Overall, ML techniques have great potential to revolutionize biomarker discovery in IIMs and lead to more effective diagnosis and treatment.

摘要

特发性炎性肌病(IIM)是一组异质性肌肉疾病,包括成人和青少年皮肌炎、多发性肌炎、免疫介导性坏死性肌病和散发性包涵体肌炎,所有这些疾病均具有不同的症状和疾病进展。由于 IIM 之间以及 IIM 亚组内存在异质性,因此鉴定 IIM 的有效生物标志物一直具有挑战性,但机器学习(ML)技术的最新进展在鉴定新型生物标志物方面显示出了希望。本文综述了最近关于 IIM 潜在生物标志物的研究,并评估了它们的临床实用性。我们还探讨了数据分析工具和 ML 算法如何用于识别生物标志物,强调了它们在提高我们对 IIM 的理解和诊断、改善患者预后方面的潜力。总的来说,ML 技术在 IIM 的生物标志物发现方面具有巨大的潜力,可以实现更有效的诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c1e/10796252/051822e3c41b/bbad514f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验