用于 Lab-on-PCB 微系统中 DNA 定量的可打印石墨烯 BioFET。

Printable graphene BioFETs for DNA quantification in Lab-on-PCB microsystems.

机构信息

Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath, BA2 7AY, UK.

出版信息

Sci Rep. 2021 May 10;11(1):9815. doi: 10.1038/s41598-021-89367-1.

Abstract

Lab-on-Chip is a technology that aims to transform the Point-of-Care (PoC) diagnostics field; nonetheless a commercial production compatible technology is yet to be established. Lab-on-Printed Circuit Board (Lab-on-PCB) is currently considered as a promising candidate technology for cost-aware but simultaneously high specification applications, requiring multi-component microsystem implementations, due to its inherent compatibility with electronics and the long-standing industrial manufacturing basis. In this work, we demonstrate the first electrolyte gated field-effect transistor (FET) DNA biosensor implemented on commercially fabricated PCB in a planar layout. Graphene ink was drop-casted to form the transistor channel and PNA probes were immobilized on the graphene channel, enabling label-free DNA detection. It is shown that the sensor can selectively detect the complementary DNA sequence, following a fully inkjet-printing compatible manufacturing process. The results demonstrate the potential for the effortless integration of FET sensors into Lab-on-PCB diagnostic platforms, paving the way for even higher sensitivity quantification than the current Lab-on-PCB state-of-the-art of passive electrode electrochemical sensing. The substitution of such biosensors with our presented FET structures, promises further reduction of the time-to-result in microsystems combining sequential DNA amplification and detection modules to few minutes, since much fewer amplification cycles are required even for low-abundance nucleic acid targets.

摘要

微流控芯片技术旨在改变即时诊断(Point-of-Care,PoC)领域;然而,兼容商业化生产的技术尚未建立。基于印刷电路板的微流控(Lab-on-Printed Circuit Board,Lab-on-PCB)目前被认为是一种很有前途的候选技术,适用于成本敏感但同时需要多组件微系统实现、具有高规格要求的应用,因为它与电子设备具有固有兼容性,并且拥有长期的工业制造基础。在这项工作中,我们展示了第一个在商业制造的印刷电路板上以平面布局实现的电解质门控场效应晶体管(FET)DNA 生物传感器。通过滴铸石墨烯墨水形成晶体管通道,并在石墨烯通道上固定 PNA 探针,实现了无标记的 DNA 检测。结果表明,该传感器可以选择性地检测互补的 DNA 序列,遵循完全兼容喷墨打印的制造工艺。研究结果表明,FET 传感器可以轻松集成到基于 Lab-on-PCB 的诊断平台中,为基于 Lab-on-PCB 的被动电极电化学传感的最新技术实现更高的灵敏度定量检测铺平了道路。我们提出的 FET 结构可以替代此类生物传感器,将结合顺序 DNA 扩增和检测模块的微系统的结果得出时间进一步缩短至几分钟,因为即使对于低丰度的核酸靶标,也需要更少的扩增循环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/702f/8111018/74f7518d66c9/41598_2021_89367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索