Suppr超能文献

基于转录组学的分子病理学预测口腔潜在恶性疾病的临床转归。

Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology.

机构信息

School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia.

出版信息

Br J Cancer. 2021 Aug;125(3):413-421. doi: 10.1038/s41416-021-01411-z. Epub 2021 May 10.

Abstract

BACKGROUND

This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation.

METHODS

Patients with oral epithelial dysplasia at one hospital were selected as the 'training set' (n = 56) whilst those at another hospital were selected for the 'test set' (n = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature.

RESULTS

A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p = 0.0003].

CONCLUSIONS

This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.

摘要

背景

本研究旨在开发和验证一种基因表达特征,以识别具有高恶性转化风险的口腔潜在恶性疾病(OPMD)。

方法

一家医院的口腔上皮异型增生患者被选为“训练集”(n=56),而另一家医院的患者被选为“测试集”(n=66)。从福尔马林固定石蜡包埋(FFPE)诊断性活检中提取 RNA,并使用 NanoString nCounter 平台进行分析。使用与口腔癌变相关的 42 个基因的靶向小组,开发了一种预后基因特征。在进行数据归一化、单变量和多变量分析以及预后建模后,开发并验证了基因特征。

结果

使用训练集开发了由 11 个基因组成的预后分类器。在测试集中,使用多变量预后模型预测患者的风险评分。在测试集中,预后基因特征是恶性转化的独立预测因子,高风险组的预后较差[风险比=12.65,p=0.0003]。

结论

本研究证明了从 OPMD 的 FFPE 诊断性活检中提取的 RNA,在 NanoString nCounter 平台上进行分析时,可用于生成一种分子分类器,该分类器具有有希望的临床应用价值,可以对恶性转化的风险进行分层。

相似文献

引用本文的文献

本文引用的文献

6
Management update of potentially premalignant oral epithelial lesions.潜在恶性口腔上皮病变的管理更新
Oral Surg Oral Med Oral Pathol Oral Radiol. 2018 Jun;125(6):628-636. doi: 10.1016/j.oooo.2018.03.010. Epub 2018 Mar 23.
8
Oral potentially malignant disorders: risk of progression to malignancy.口腔潜在恶性疾病:进展为恶性肿瘤的风险
Oral Surg Oral Med Oral Pathol Oral Radiol. 2018 Jun;125(6):612-627. doi: 10.1016/j.oooo.2017.12.011. Epub 2017 Dec 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验