Kang Minsoo, Chai Hyun-Jun, Jeong Han Beom, Park Cheolmin, Jung In-Young, Park Eunpyo, Çiçek Mert Miraç, Lee Injun, Bae Byeong-Soo, Durgun Engin, Kwak Joon Young, Song Seungwoo, Choi Sung-Yool, Jeong Hu Young, Kang Kibum
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
School of Electrical Engineering, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
ACS Nano. 2021 May 25;15(5):8715-8723. doi: 10.1021/acsnano.1c00811. Epub 2021 May 11.
Ternary metal-oxy-chalcogenides are emerging as next-generation layered semiconductors beyond binary metal-chalcogenides (, MoS). Among ternary metal-oxy-chalcogenides, especially BiOSe has been demonstrated in field-effect transistors and photodetectors, exhibiting ultrahigh performance with robust air stability. The growth method for BiOSe that has been reported so far is a powder sublimation based chemical vapor deposition. The first step for pursuing the practical application of BiOSe as a semiconductor material is developing a gas-phase growth process. Here, we report a cracking metal-organic chemical vapor deposition (c-MOCVD) for the gas-phase growth of BiOSe. The resulting BiOSe films at very low growth temperature (∼300 °C) show single-crystalline quality. By taking advantage of the gas-phase growth, the precise phase control was demonstrated by modulating the partial pressure of each precursor. In addition, c-MOCVD-grown BiOSe exhibits outstanding electrical and optoelectronic performance at room temperature without passivation, including maximum electron mobility of 127 cm/(V·s) and photoresponsivity of 45134 A/W.
三元金属氧族硫属化物正作为超越二元金属硫属化物(如MoS)的下一代层状半导体而崭露头角。在三元金属氧族硫属化物中,尤其是BiOSe已在场效应晶体管和光电探测器中得到验证,展现出具有强大空气稳定性的超高性能。到目前为止报道的BiOSe生长方法是基于粉末升华的化学气相沉积法。将BiOSe作为半导体材料进行实际应用的第一步是开发气相生长工艺。在此,我们报道一种用于BiOSe气相生长的裂解金属有机化学气相沉积(c-MOCVD)法。在非常低的生长温度(约300°C)下得到的BiOSe薄膜呈现出单晶质量。借助气相生长,通过调节每种前驱体的分压实现了精确的相控制。此外,c-MOCVD生长的BiOSe在室温下无需钝化就表现出出色的电学和光电性能,包括最大电子迁移率为127 cm²/(V·s)以及光响应度为45134 A/W。