Qu Gang, Xiao Li, Hu Wenxing, Wang Junqi, Zhang Kun, Calhoun Vince, Wang Yu-Ping
IEEE Trans Biomed Eng. 2021 Dec;68(12):3564-3573. doi: 10.1109/TBME.2021.3077875. Epub 2021 Nov 19.
Multi-modal functional magnetic resonance imaging (fMRI) can be used to make predictions about individual behavioral and cognitive traits based on brain connectivity networks.
To take advantage of complementary information from multi-modal fMRI, we propose an interpretable multi-modal graph convolutional network (MGCN) model, incorporating both fMRI time series and functional connectivity (FC) between each pair of brain regions. Specifically, our model learns a graph embedding from individual brain networks derived from multi-modal data. A manifold-based regularization term is enforced to consider the relationships of subjects both within and between modalities. Furthermore, we propose the gradient-weighted regression activation mapping (Grad-RAM) and the edge mask learning to interpret the model, which is then used to identify significant cognition-related biomarkers.
We validate our MGCN model on the Philadelphia Neurodevelopmental Cohort to predict individual wide range achievement test (WRAT) score. Our model obtains superior predictive performance over GCN with a single modality and other competing approaches. The identified biomarkers are cross-validated from different approaches.
This paper develops a new interpretable graph deep learning framework for cognition prediction, with the potential to overcome the limitations of several current data-fusion models. The results demonstrate the power of MGCN in analyzing multi-modal fMRI and discovering significant biomarkers for human brain studies.
多模态功能磁共振成像(fMRI)可用于基于脑连接网络对个体行为和认知特征进行预测。
为利用多模态fMRI的互补信息,我们提出了一种可解释的多模态图卷积网络(MGCN)模型,该模型结合了fMRI时间序列以及每对脑区之间的功能连接(FC)。具体而言,我们的模型从多模态数据导出的个体脑网络中学习图嵌入。引入基于流形的正则化项以考虑模态内和模态间受试者的关系。此外,我们提出了梯度加权回归激活映射(Grad-RAM)和边掩码学习来解释该模型,然后用其识别与认知相关的重要生物标志物。
我们在费城神经发育队列上验证了我们的MGCN模型,以预测个体的广泛成就测试(WRAT)分数。我们的模型相对于单模态GCN和其他竞争方法获得了卓越的预测性能。所识别的生物标志物通过不同方法进行了交叉验证。
本文开发了一种用于认知预测的新型可解释图深度学习框架,有潜力克服当前几种数据融合模型的局限性。结果证明了MGCN在分析多模态fMRI和发现人脑研究重要生物标志物方面的能力。