Suppr超能文献

功能连接中的可识别性可能会无意中夸大预测结果。

Identifiability in Functional Connectivity May Unintentionally Inflate Prediction Results.

作者信息

Orlichenko Anton, Qu Gang, Su Kuan-Jui, Liu Anqi, Shen Hui, Deng Hong-Wen, Wang Yu-Ping

机构信息

Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.

School of Medicine, Tulane University, New Orleans, LA, USA.

出版信息

ArXiv. 2023 Aug 2:arXiv:2308.01451v1.

Abstract

Functional magnetic resonance (fMRI) is an invaluable tool in studying cognitive processes in vivo. Many recent studies use functional connectivity (FC), partial correlation connectivity (PC), or fMRI-derived brain networks to predict phenotypes with results that sometimes cannot be replicated. At the same time, FC can be used to identify the same subject from different scans with great accuracy. In this paper, we show a method by which one can unknowingly inflate classification results from 61% accuracy to 86% accuracy by treating longitudinal or contemporaneous scans of the same subject as independent data points. Using the UK Biobank dataset, we find one can achieve the same level of variance explained with 50 training subjects by exploiting identifiability as with 10,000 training subjects without double-dipping. We replicate this effect in four different datasets: the UK Biobank (UKB), the Philadelphia Neurodevelopmental Cohort (PNC), the Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP), and an OpenNeuro Fibromyalgia dataset (Fibro). The unintentional improvement ranges between 7% and 25% in the four datasets. Additionally, we find that by using dynamic functional connectivity (dFC), one can apply this method even when one is limited to a single scan per subject. One major problem is that features such as ROIs or connectivities that are reported alongside inflated results may confuse future work. This article hopes to shed light on how even minor pipeline anomalies may lead to unexpectedly superb results.

摘要

功能磁共振成像(fMRI)是研究体内认知过程的一种宝贵工具。最近的许多研究使用功能连接(FC)、偏相关连接(PC)或fMRI衍生的脑网络来预测表型,但其结果有时无法重复。同时,FC可用于从不同扫描中非常准确地识别同一受试者。在本文中,我们展示了一种方法,即通过将同一受试者的纵向或同期扫描视为独立数据点,人们可以在不知不觉中将分类结果的准确率从61%提高到86%。使用英国生物银行数据集,我们发现通过利用可识别性,50名训练受试者就能达到与10000名训练受试者相同的方差解释水平,且无需重复使用数据。我们在四个不同的数据集中重复了这一效应:英国生物银行(UKB)、费城神经发育队列(PNC)、双相情感障碍和精神分裂症中间表型网络(BSNIP)以及一个开放神经纤维肌痛数据集(Fibro)。在这四个数据集中,无意的准确率提高幅度在7%至25%之间。此外,我们发现通过使用动态功能连接(dFC),即使每个受试者仅限于一次扫描,也可以应用此方法。一个主要问题是,与夸大结果一起报告的数据特征(如感兴趣区域或连接性)可能会使未来的研究产生混淆。本文希望阐明即使是微小的流程异常也可能导致意想不到的出色结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ca/10418521/f9fe277b7c45/nihpp-2308.01451v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验