Suppr超能文献

WDNE:一种用于从具有缺失值的多平台基因表达数据中推断差异网络的综合图形模型。

WDNE: an integrative graphical model for inferring differential networks from multi-platform gene expression data with missing values.

机构信息

Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China.

Department of Electrical Engineering, City University of Hong Kong, Hong Kong, 999077, China.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab086.

Abstract

The mechanisms controlling biological process, such as the development of disease or cell differentiation, can be investigated by examining changes in the networks of gene dependencies between states in the process. High-throughput experimental methods, like microarray and RNA sequencing, have been widely used to gather gene expression data, which paves the way to infer gene dependencies based on computational methods. However, most differential network analysis methods are designed to deal with fully observed data, but missing values, such as the dropout events in single-cell RNA-sequencing data, are frequent. New methods are needed to take account of these missing values. Moreover, since the changes of gene dependencies may be driven by certain perturbed genes, considering the changes in gene expression levels may promote the identification of gene network rewiring. In this study, a novel weighted differential network estimation (WDNE) model is proposed to handle multi-platform gene expression data with missing values and take account of changes in gene expression levels. Simulation studies demonstrate that WDNE outperforms state-of-the-art differential network estimation methods. When applied WDNE to infer differential gene networks associated with drug resistance in ovarian tumors, cell differentiation and breast tumor heterogeneity, the hub genes in the estimated differential gene networks can provide important insights into the underlying mechanisms. Furthermore, a Matlab toolbox, differential network analysis toolbox, was developed to implement the WDNE model and visualize the estimated differential networks.

摘要

控制生物过程的机制,如疾病的发展或细胞分化,可以通过研究过程中状态之间的基因依赖网络的变化来研究。高通量实验方法,如微阵列和 RNA 测序,已被广泛用于收集基因表达数据,这为基于计算方法推断基因依赖性铺平了道路。然而,大多数差异网络分析方法旨在处理完全观察到的数据,但缺失值(如单细胞 RNA 测序数据中的缺失事件)很常见。需要新的方法来考虑这些缺失值。此外,由于基因依赖性的变化可能是由某些扰动基因驱动的,因此考虑基因表达水平的变化可能会促进基因网络重布线的识别。在这项研究中,提出了一种新的加权差异网络估计(WDNE)模型,用于处理具有缺失值的多平台基因表达数据,并考虑基因表达水平的变化。模拟研究表明,WDNE 优于最先进的差异网络估计方法。当将 WDNE 应用于推断与卵巢肿瘤、细胞分化和乳腺癌异质性相关的药物抗性的差异基因网络时,估计的差异基因网络中的枢纽基因可以为潜在机制提供重要见解。此外,还开发了一个 Matlab 工具箱,即差异网络分析工具箱,以实现 WDNE 模型并可视化估计的差异网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验