Liu Chen, Cai Dehan, Zeng WuCha, Huang Yun
Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China.
Front Genet. 2021 Nov 11;12:760155. doi: 10.3389/fgene.2021.760155. eCollection 2021.
Evidences increasingly indicate the involvement of gene network rewiring in disease development and cell differentiation. With the accumulation of high-throughput gene expression data, it is now possible to infer the changes of gene networks between two different states or cell types via computational approaches. However, the distribution diversity of multi-platform gene expression data and the sparseness and high noise rate of single-cell RNA sequencing (scRNA-seq) data raise new challenges for existing differential network estimation methods. Furthermore, most existing methods are purely rely on gene expression data, and ignore the additional information provided by various existing biological knowledge. In this study, to address these challenges, we propose a general framework, named weighted joint sparse penalized D-trace model (WJSDM), to infer differential gene networks by integrating multi-platform gene expression data and multiple prior biological knowledge. Firstly, a non-paranormal graphical model is employed to tackle gene expression data with missing values. Then we propose a weighted group bridge penalty to integrate multi-platform gene expression data and various existing biological knowledge. Experiment results on synthetic data demonstrate the effectiveness of our method in inferring differential networks. We apply our method to the gene expression data of ovarian cancer and the scRNA-seq data of circulating tumor cells of prostate cancer, and infer the differential network associated with platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer. By analyzing the estimated differential networks, we find some important biological insights about the mechanisms underlying platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer.
越来越多的证据表明基因网络重排参与了疾病发展和细胞分化过程。随着高通量基因表达数据的积累,现在可以通过计算方法推断两种不同状态或细胞类型之间基因网络的变化。然而,多平台基因表达数据的分布多样性以及单细胞RNA测序(scRNA-seq)数据的稀疏性和高噪声率给现有的差异网络估计方法带来了新的挑战。此外,大多数现有方法纯粹依赖基因表达数据,而忽略了各种现有生物学知识提供的额外信息。在本研究中,为应对这些挑战,我们提出了一个通用框架,称为加权联合稀疏惩罚D-迹模型(WJSDM),通过整合多平台基因表达数据和多种先验生物学知识来推断差异基因网络。首先,采用非正态图形模型来处理存在缺失值的基因表达数据。然后我们提出加权组桥惩罚来整合多平台基因表达数据和各种现有生物学知识。在合成数据上的实验结果证明了我们的方法在推断差异网络方面的有效性。我们将我们的方法应用于卵巢癌的基因表达数据和前列腺癌循环肿瘤细胞的scRNA-seq数据,并推断出与卵巢癌铂耐药性和前列腺癌抗雄激素耐药性相关的差异网络。通过分析估计的差异网络,我们发现了一些关于卵巢癌铂耐药性和前列腺癌抗雄激素耐药性潜在机制的重要生物学见解。