Department of Radiology, Fudan University Shanghai Cancer Center (FUSCC), Shanghai, PR China.
Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China.
Acta Radiol. 2022 Jun;63(6):847-856. doi: 10.1177/02841851211014188. Epub 2021 May 11.
There are significant differences in outcomes for different histological subtypes of cervical cancer (CC). Yet, it is difficult to distinguish CC subtypes using non-invasive methods.
To investigate whether multiparametric magnetic resonance imaging (MRI)-based radiomics analysis can differentiate CC subtypes and explore tumor heterogeneity.
This study retrospectively analyzed 96 patients with CC (squamous cell carcinoma [SCC] = 50, adenocarcinoma [AC] = 46) who underwent pelvic MRI before surgery. Radiomics features were extracted from the tumor volumes on five sequences (sagittal T2-weighted imaging [T2SAG], transverse T2-weighted imaging [T2TRA], sagittal contrast-enhanced T1-weighted imaging [CESAG], transverse contrast-enhanced T1-weighted imaging [CETRA], and apparent diffusion coefficient [ADC]). Clustering and logistic regression were used to examine the distinguishing capabilities of radiomics features extracted from five different MR sequences.
Among the 105 extracted radiomics features, there were 51, 38, 37, and 2 features that showed intergroup differences for T2SAG, T2TRA, ADC, and CESAG, respectively (all < 0.05). AC had greater textural heterogeneity than SCC ( < 0.05). Upon unsupervised clustering of significantly different features, T2SAG achieved the highest accuracy (0.844; sensitivity = 0.920; specificity = 0.761). The largest area under the curve (AUC) for classification ability was 0.86 for T2SAG. Hence, the radiomics model from five combined MR sequences (AUC = 0.89; accuracy = 0.81; sensitivity = 0.67; specificity = 0.94) exhibited better differentiation ability than any MR sequence alone.
Multiparametric MRI-based radiomics models may be a promising method to differentiate AC and SCC. AC showed more heterogeneous features than SCC.
不同组织学类型的宫颈癌(CC)的预后存在显著差异。然而,使用非侵入性方法很难区分 CC 亚型。
研究多参数磁共振成像(MRI)基于放射组学分析是否能区分 CC 亚型并探索肿瘤异质性。
本研究回顾性分析了 96 例术前接受盆腔 MRI 的 CC 患者(鳞癌[SCC] = 50 例,腺癌[AC] = 46 例)。从 5 个序列(矢状 T2 加权成像[T2SAG]、横轴 T2 加权成像[T2TRA]、矢状对比增强 T1 加权成像[CESAG]、横轴对比增强 T1 加权成像[CETRA]和表观扩散系数[ADC])的肿瘤体积中提取放射组学特征。使用聚类和逻辑回归分析来检查从 5 种不同 MRI 序列提取的放射组学特征的鉴别能力。
在提取的 105 个放射组学特征中,T2SAG、T2TRA、ADC 和 CESAG 分别有 51、38、37 和 2 个特征显示组间差异(均 < 0.05)。AC 的纹理异质性大于 SCC( < 0.05)。对差异显著的特征进行无监督聚类后,T2SAG 的准确率最高(0.844;敏感性 = 0.920;特异性 = 0.761)。分类能力的最大曲线下面积(AUC)为 0.86,用于 T2SAG。因此,基于 5 种联合 MRI 序列的放射组学模型(AUC = 0.89;准确率 = 0.81;敏感性 = 0.67;特异性 = 0.94)的区分能力优于任何单一 MRI 序列。
基于多参数 MRI 的放射组学模型可能是一种有前途的方法,可用于区分 AC 和 SCC。AC 的异质性特征多于 SCC。