Suppr超能文献

用于预测宫颈癌分期的基于缩小视野扩散加权成像的临床影像组学模型

Reduced field-of-view DWI‑derived clinical-radiomics model for the prediction of stage in cervical cancer.

作者信息

Huang Qiuhan, Deng Baodi, Wang Yanchun, Shen Yaqi, Hu Xuemei, Feng Cui, Li Zhen

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.

出版信息

Insights Imaging. 2023 Jan 26;14(1):18. doi: 10.1186/s13244-022-01346-w.

Abstract

BACKGROUND

Pretreatment prediction of stage in patients with cervical cancer (CC) is vital for tailoring treatment strategy. This study aimed to explore the feasibility of a model combining reduced field-of-view (rFOV) diffusion-weighted imaging (DWI)-derived radiomics with clinical features in staging CC.

METHODS

Patients with pathologically proven CC were enrolled in this retrospective study. The rFOV DWI with b values of 0 and 800 s/mm was acquired and the clinical characteristics of each patient were collected. Radiomics features were extracted from the apparent diffusion coefficient maps and key features were selected subsequently. A clinical-radiomics model combining radiomics with clinical features was constructed. The receiver operating characteristic curve was introduced to evaluate the predictive efficacy of the model, followed by comparisons with the MR-based subjective stage assessment (radiological model).

RESULTS

Ninety-four patients were analyzed and divided into training (n = 61) and testing (n = 33) cohorts. In the training cohort, the area under the curve (AUC) of clinical-radiomics model (AUC = 0.877) for staging CC was similar to that of radiomics model (AUC = 0.867), but significantly higher than that of clinical model (AUC = 0.673). In the testing cohort, the clinical-radiomics model yielded the highest predictive performance (AUC = 0.887) of staging CC, even without a statistically significant difference when compared with the clinical model (AUC = 0.793), radiomics model (AUC = 0.846), or radiological model (AUC = 0.823).

CONCLUSIONS

The rFOV DWI-derived clinical-radiomics model has the potential for staging CC, thereby facilitating clinical decision-making.

摘要

背景

宫颈癌(CC)患者治疗前的分期预测对于制定个体化治疗策略至关重要。本研究旨在探讨一种将缩小视野(rFOV)扩散加权成像(DWI)衍生的放射组学与临床特征相结合的模型在CC分期中的可行性。

方法

本回顾性研究纳入了经病理证实的CC患者。采集了b值为0和800 s/mm²的rFOV DWI图像,并收集了每位患者的临床特征。从表观扩散系数图中提取放射组学特征,随后选择关键特征。构建了一个将放射组学与临床特征相结合的临床放射组学模型。引入受试者操作特征曲线来评估该模型的预测效能,随后与基于磁共振成像的主观分期评估(放射学模型)进行比较。

结果

对94例患者进行了分析,并分为训练组(n = 61)和测试组(n = 33)。在训练组中,临床放射组学模型用于CC分期的曲线下面积(AUC)(AUC = 0.877)与放射组学模型(AUC = 0.867)相似,但显著高于临床模型(AUC = 0.673)。在测试组中,临床放射组学模型在CC分期中具有最高的预测性能(AUC = 0.887),即使与临床模型(AUC = 0.793)、放射组学模型(AUC = 0.846)或放射学模型(AUC = 0.823)相比,差异也无统计学意义。

结论

rFOV DWI衍生的临床放射组学模型具有CC分期的潜力,从而有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3564/9880109/38a04f56f824/13244_2022_1346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验