Institute for Medical Information Processing, Biometry and Epidemiology, LMU, Munich, Germany.
Institute of Medical Informatics, Statistics and Epidemiology, School of Medicine, TUM, Munich, Germany.
Genome Biol. 2021 May 11;22(1):152. doi: 10.1186/s13059-021-02365-4.
Most research articles presenting new data analysis methods claim that "the new method performs better than existing methods," but the veracity of such statements is questionable. Our manuscript discusses and illustrates consequences of the optimistic bias occurring during the evaluation of novel data analysis methods, that is, all biases resulting from, for example, selection of datasets or competing methods, better ability to fix bugs in a preferred method, and selective reporting of method variants. We quantitatively investigate this bias using an example from epigenetic analysis: normalization methods for data generated by the Illumina HumanMethylation450K BeadChip microarray.
大多数提出新数据分析方法的研究文章都声称“新方法比现有方法表现更好”,但这种说法的真实性值得怀疑。我们的论文讨论并说明了在评估新数据分析方法时出现的乐观偏见的后果,即所有的偏见都源于例如数据集或竞争方法的选择、更好地修复首选方法中的错误的能力以及方法变体的选择性报告。我们使用来自表观遗传学分析的一个例子来定量研究这种偏见:Illumina HumanMethylation450K BeadChip 微阵列产生的数据的归一化方法。