Seoul National University College of Medicine, Seoul, Republic of Korea.
Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul, 110-744, Republic of Korea.
Sci Rep. 2021 May 11;11(1):9974. doi: 10.1038/s41598-021-89218-z.
Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, local and distant recurrence. Here, we propose two different neural network models to predict the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903-1.000) for local recurrence; 0.864 (0.726-0.976) for distant recurrence for each patient in the validation set. This creates an opportunity to provide personalized medicine in contrast to studies investigating only group differences. Moreover, interpretable deep learning identified that salient radiomic features for each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated that the combined salient radiomic features, or "radiomic risk score", increased risk of recurrence/progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival.
尽管采用了最佳治疗方法,胶质母细胞瘤仍然是最具破坏性的脑肿瘤,因为其复发率很高。与局部复发相比,远处复发具有明显不同的基因组改变,这在临床实践和试验中都需要不同的治疗计划。迄今为止,灌注加权 MRI 已经表明肿瘤的灌注特征与预后相关。然而,对于胶质母细胞瘤的复发模式,即局部和远处复发,研究还不多。在这里,我们提出了两种不同的神经网络模型,利用灌注 MRI 基于高维放射组学特征来预测胶质母细胞瘤的复发模式:局部复发的曲线下面积 (AUC) (95%置信区间) 为 0.969 (0.903-1.000);远处复发的 AUC 为 0.864 (0.726-0.976),在验证集中,每位患者的 AUC 均如此。这为提供个性化医疗提供了机会,与仅研究组间差异的研究形成对比。此外,可解释的深度学习确定了每个复发模式的显著放射组学特征与肿瘤内灌注异质性有关。我们还证明,在无进展生存的多变量 Cox 回归中,联合显著放射组学特征或“放射组学风险评分”增加了复发/进展的风险(危险比,1.61;p=0.03)。